Calculation of the flow of rarefied gas around a circular cylinder at low Knudsen numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1304-1320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A symmetric second-order accurate splitting numerical method for the Boltzmann equation is proposed that is oriented to the examination of gas flow at low Knudsen numbers. The collision integral is linearized about a locally Maxwellian distribution function. Examples of the calculation of two-dimensional nonstationary flows around a circular cylinder are considered. An external macroscopic region is introduced that makes it possible to reduce the region in which the kinetic equation is solved. As a result, self-oscillations of the flow near the cylinder at low Knudsen numbers are examined.
@article{ZVMMF_2005_45_7_a13,
     author = {I. N. Larina and V. A. Rykov},
     title = {Calculation of the flow of rarefied gas around a circular cylinder at low {Knudsen} numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1304--1320},
     year = {2005},
     volume = {45},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a13/}
}
TY  - JOUR
AU  - I. N. Larina
AU  - V. A. Rykov
TI  - Calculation of the flow of rarefied gas around a circular cylinder at low Knudsen numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1304
EP  - 1320
VL  - 45
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a13/
LA  - ru
ID  - ZVMMF_2005_45_7_a13
ER  - 
%0 Journal Article
%A I. N. Larina
%A V. A. Rykov
%T Calculation of the flow of rarefied gas around a circular cylinder at low Knudsen numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1304-1320
%V 45
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a13/
%G ru
%F ZVMMF_2005_45_7_a13
I. N. Larina; V. A. Rykov. Calculation of the flow of rarefied gas around a circular cylinder at low Knudsen numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1304-1320. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a13/

[1] Larina H. H., Rykov V. A., “Chislennyi metod vtorogo poryadka tochnosti dlya resheniya uravneniya Boltsmana pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 559–568 | MR | Zbl

[2] Larina H. H., Rykov V. A., “Chislennoe reshenie uravneniya Boltsmana metodom simmetrichnogo rasschepleniya”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 601–613 | MR | Zbl

[3] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[4] Maslova N. B., “Statsionarnye resheniya uravneniya Boltsmana v neogranichennykh oblastyakh”, Dokl. AN SSSR, 260:4 (1981), 844–848 | MR | Zbl

[5] Maslova N. B., Nonlinear evolution equations, Series on Advances in Mathematics for Applied Scences, 10, Wold Scentific, 1993 | MR

[6] Chetverushkin B. H., Dorodnitsyn L. V., “Kineticheski soglasovannye skhemy v gazovoi dinamike”, Matem. modelirovanie, 11:5 (1999), 84–100 | MR | Zbl

[7] Popov S. P., Cheremisin F. G., “Sovmestnoe reshenie uravneniya Boltsmana i uravnenii pogranichnogo sloya”, Matem. modelirovanie, 12:7 (2000), 71–78 | Zbl

[8] Ezerskii A. B., “Otryvnoe obtekanie nagretogo tsilindra pri malykh chislakh Makha”, Zh. prikl. mekhan. i tekhn. fiz., 1990, no. 5, 56–62

[9] Landa P. S., Nelineinye kolebaniya i volny, Nauka, M., 1997, 496 pp. | MR

[10] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984 | MR

[11] Chzhen P., Otryvnye techeniya, v. 1–3, Mir, M., 1973

[12] Shkadova V. P., “Vraschayuschiisya tsilindr v potoke vyazkoi neszhimaemoi zhidkosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1982, no. 1, 16–21 | Zbl

[13] Sedov L. I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1976 | Zbl