On the optimization of a class of algorithms for solving nonsymmetric saddle point problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1157-1166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To solve a nonsingular nonsymmetric system of linear equations with a saddle point, an algorithm with three constant iteration parameters is developed as an extension of the well-known Arrow–Hurwicz algorithm. An estimate for the spectral radius of the transition operator is derived. The asymptotic convergence rate is examined as a function of the nonsymmetric part of the original problem. The results of numerical experiments are presented.
@article{ZVMMF_2005_45_7_a1,
     author = {Yu. V. Bychenkov},
     title = {On the optimization of a class of algorithms for solving nonsymmetric saddle point problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1157--1166},
     year = {2005},
     volume = {45},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a1/}
}
TY  - JOUR
AU  - Yu. V. Bychenkov
TI  - On the optimization of a class of algorithms for solving nonsymmetric saddle point problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1157
EP  - 1166
VL  - 45
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a1/
LA  - ru
ID  - ZVMMF_2005_45_7_a1
ER  - 
%0 Journal Article
%A Yu. V. Bychenkov
%T On the optimization of a class of algorithms for solving nonsymmetric saddle point problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1157-1166
%V 45
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a1/
%G ru
%F ZVMMF_2005_45_7_a1
Yu. V. Bychenkov. On the optimization of a class of algorithms for solving nonsymmetric saddle point problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1157-1166. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a1/

[1] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, New York, 1991 | MR | Zbl

[2] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989 | MR

[3] Arrow K., Hurwicz L., Uzawa H., Studies in nonlinear programming, Stanford Univ. Press, Stanford, CA, 1958 | MR

[4] Kobelkov G. M., “O chislennykh metodakh resheniya uravnenii Nave-Stoksa v peremennykh skorost-davlenie”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 204–236 | MR

[5] Queck W., “The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type”, SIAM J. Numer. Analys., 1989, no. 4, 1016–1030 | DOI | MR | Zbl

[6] Bramble J. H., Pasciak J. E., Vassilev A. T., “Uzawa type algorithms for nonsymmetric saddle point problems”, Math. Comput., 69:230 (2000), 667–689 | MR | Zbl

[7] Chizhonkov E. B., “O skhodimosti algoritma Errou-Gurvitsa dlya algebraicheskoi sistemy tipa Stoksa”, Dokl. RAN, 361:5 (1998), 1–3 | MR

[8] Astrakhantsev G. P., “O vybore pochti optimalnykh parametrov v algoritmakh tipa Errou-Gurvitsa”, Izv. vuzov. Matematika, 2003, no. 1, 12–19 | MR | Zbl

[9] Chizhonkov E. V., “On solving an algebraic system of Stokes type under block diagonal preconditioning”, Comput. Math. and Math. Phys., 41:4 (2001), 514–521 | MR | Zbl

[10] Zulehner W., “Analysis of iterative methods for saddle point problems: a unified approach”, Math. Comput., 71:238 (2002), 479–505 | MR | Zbl

[11] Bychenkov Yu. V., “Optimization of one class of nonsymmetrizable algorithms for saddle point problems”, Rus. J. Numer. Analys. and Math. Modeling, 17:6 (2002), 521–546 | MR | Zbl

[12] Bychenkov Yu. V., “Ob odnom trekhparametricheskom metode resheniya uravnenii Nave-Stoksa”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1405–1412 | MR | Zbl

[13] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[14] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauch. kniga, Novosibirsk, 1997

[15] Olshanskii M. A., “An iterative solver for the Oseen problem and numerical solution of incompressible Navier-Stokes equations”, Numer. Linear. Algebra Appl., 1999, no. 6, 353–378 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] Lebedev V. I., “Metod setok dlya uravnenii tipa Soboleva”, Dokl. AN SSSR, 114:6 (1956), 1166–1169