Asymptotic structure of wave disturbances in the stability theory of a plane Couette–Poiseuille flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1060-1080 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stability of a plane Couette–Poiseuille flow is analyzed in the case of Reynolds numbers tending to infinity. Dispersion relations connecting the parameters of linear eigenoscillations are derived by asymptotic methods. The relations possess qualitatively new properties lacking in the case of the Poiseuille flow. The perturbation pattern depends strongly on the relation between the Reynolds number and the wall velocities. Four characteristic regimes can be distinguished for which there are neutral (or nearly neutral) modes in the spectrum of eigenoscillations.
@article{ZVMMF_2005_45_6_a9,
     author = {V. I. Zhuk and I. G. Protsenko},
     title = {Asymptotic structure of wave disturbances in the stability theory of a plane {Couette{\textendash}Poiseuille} flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1060--1080},
     year = {2005},
     volume = {45},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a9/}
}
TY  - JOUR
AU  - V. I. Zhuk
AU  - I. G. Protsenko
TI  - Asymptotic structure of wave disturbances in the stability theory of a plane Couette–Poiseuille flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1060
EP  - 1080
VL  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a9/
LA  - ru
ID  - ZVMMF_2005_45_6_a9
ER  - 
%0 Journal Article
%A V. I. Zhuk
%A I. G. Protsenko
%T Asymptotic structure of wave disturbances in the stability theory of a plane Couette–Poiseuille flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1060-1080
%V 45
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a9/
%G ru
%F ZVMMF_2005_45_6_a9
V. I. Zhuk; I. G. Protsenko. Asymptotic structure of wave disturbances in the stability theory of a plane Couette–Poiseuille flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1060-1080. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a9/

[1] Romanov V. A., “Ustoichivost ploskoparallelnogo techeniya Kuetta”, Dokl. AN SSSR, 196:5 (1971), 1049–1051 | MR | Zbl

[2] Romanov V. A., “Ustoichivost ploskoparallelnogo techeniya Kuetta”, Funkts. analiz i ego prilozh., 7:2 (1973), 62–73 | MR | Zbl

[3] Boiko A. V., Grek G. R., Dovgal A. V., Kozlov V. V., Vozniknovenie turbulentnosti v pristennykh techeniyakh, Nauka. Sibirskoe predpriyatie RAN, Novosibirsk, 1999 | MR

[4] Heisenberg W., “Über Stabilität und Turbulenz von Flüssigkeits-strömmen”, Ann. Physics, 74 (1924), 577–627 | DOI

[5] Reid W. H., “The stability of parallel flows”, Basic Developments in Fluid Dynamics, v. 1, Acad. Press, New York, 1965 | MR | Zbl

[6] Neiland V. Ya., Asimptoticheskie zadachi teorii vyazkikh sverkhzvukovykh techenii, Tr. TsAGI, 1529, M., 1974

[7] Stewartson K., “Multistructured boundary layers on flat plates and related bodies”, Adv. Appl. Mech., 14, 1974, 145–239

[8] Smith F. T., “On the high Reynolds number theory of laminar flows”, IMA J. Appl. Math., 28:3 (1982), 207–281 | DOI | MR | Zbl

[9] Smith F. T., “On the nonparallel flow stability of the Blasius boundary layer”, Proc. Roy. Soc. London. Ser. A, 366:1724 (1979), 91–109 | DOI | Zbl

[10] Zhuk V. I., Volny Tollmina-Shlikhtinga i solitony, Nauka, M., 2001

[11] Smith F. T., “Flow through constricted or dilated pipes and channels, 1”, Quart. J. Mech. and Appl. Math., 29:3 (1976), 343–364 | DOI | Zbl

[12] Smith F. T., “Upstream interaction in channel flows”, J. Fluid Mech., 79:4 (1977), 631–655 | DOI

[13] Bogdanova E. B., Ryzhov O. S., “O kolebaniyakh, vozbuzhdaemykh garmonicheskim ostsillyatorom v techenii Puazeilya”, Dokl. RAN, 257:4 (1981), 837–841 | Zbl

[14] Bogdanova E. V., Ryzhov O. S., “Free and induced oscillations in Poiseuille flow”, Quart. J. Mech. and Appl. Math., 36:2 (1983), 271–287 | DOI | Zbl

[15] Smith F. T., Cowlew S. J., “On the stability of Poiseuille-Couette flow: a bifurcation from infinity”, J. Fluid Mech., 156 (1985), 83–100 | DOI | MR | Zbl

[16] Healy J. J., “On the neutral curve of the flat-plate boundary layer: comparison between experiment Orr-Sommerfeld theory and asymptotic theory”, J. Fluid Mech., 288 (1995), 59–73 | DOI

[17] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR

[18] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[19] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[20] Zhuk V. I., Ryzhov O. S., “O svobodnom vzaimodeistvii pristenochnykh sloev s yadrom techeniya Puazeilya”, Dokl. AN SSSR, 257:1 (1981), 55–59 | MR | Zbl

[21] Lin C. C., “On the stability of two-dimensional parallel flow. III: Stability in a viscous fluid”, Quart. Appl. Math., 3:4 (1946), 277–301 | MR | Zbl

[22] Lin Tszya-tszyao, Teoriya gidrodinamicheskoi ustoichivosti, Izd-vo inostr. lit., M., 1958