Asymptotic structure of wave disturbances in the stability theory of a plane Couette–Poiseuille flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1060-1080
Voir la notice de l'article provenant de la source Math-Net.Ru
The stability of a plane Couette–Poiseuille flow is analyzed in the case of Reynolds numbers tending to infinity. Dispersion relations connecting the parameters of linear eigenoscillations are derived by asymptotic methods. The relations possess qualitatively new properties lacking in the case of the Poiseuille flow. The perturbation pattern depends strongly on the relation between the Reynolds number and the wall velocities. Four characteristic regimes can be distinguished for which there are neutral (or nearly neutral) modes in the spectrum of eigenoscillations.
@article{ZVMMF_2005_45_6_a9,
author = {V. I. Zhuk and I. G. Protsenko},
title = {Asymptotic structure of wave disturbances in the stability theory of a plane {Couette{\textendash}Poiseuille} flow},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1060--1080},
publisher = {mathdoc},
volume = {45},
number = {6},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a9/}
}
TY - JOUR AU - V. I. Zhuk AU - I. G. Protsenko TI - Asymptotic structure of wave disturbances in the stability theory of a plane Couette–Poiseuille flow JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1060 EP - 1080 VL - 45 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a9/ LA - ru ID - ZVMMF_2005_45_6_a9 ER -
%0 Journal Article %A V. I. Zhuk %A I. G. Protsenko %T Asymptotic structure of wave disturbances in the stability theory of a plane Couette–Poiseuille flow %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1060-1080 %V 45 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a9/ %G ru %F ZVMMF_2005_45_6_a9
V. I. Zhuk; I. G. Protsenko. Asymptotic structure of wave disturbances in the stability theory of a plane Couette–Poiseuille flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1060-1080. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a9/