A mixed problem for the Boussinesq equation in a bounded domain and the behavior of its solution as time tends to infinity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1048-1059 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic almost periodicity of solutions to mixed problems for the linear Boussinesq equation is proved in a bounded domain of a multidimensional Euclidean space.
@article{ZVMMF_2005_45_6_a8,
     author = {B. A.-G. Iskenderov and A. I. Mamedova},
     title = {A mixed problem for the {Boussinesq} equation in a bounded domain and the behavior of its solution as time tends to infinity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1048--1059},
     year = {2005},
     volume = {45},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a8/}
}
TY  - JOUR
AU  - B. A.-G. Iskenderov
AU  - A. I. Mamedova
TI  - A mixed problem for the Boussinesq equation in a bounded domain and the behavior of its solution as time tends to infinity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1048
EP  - 1059
VL  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a8/
LA  - ru
ID  - ZVMMF_2005_45_6_a8
ER  - 
%0 Journal Article
%A B. A.-G. Iskenderov
%A A. I. Mamedova
%T A mixed problem for the Boussinesq equation in a bounded domain and the behavior of its solution as time tends to infinity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1048-1059
%V 45
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a8/
%G ru
%F ZVMMF_2005_45_6_a8
B. A.-G. Iskenderov; A. I. Mamedova. A mixed problem for the Boussinesq equation in a bounded domain and the behavior of its solution as time tends to infinity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1048-1059. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a8/

[1] Muckenhoupt C. F., “Almost-periodic functions and vibrating systems”, J. Math. Phys., 8:3 (1929) | Zbl

[2] Bochner S., “Fastperiodische Lösungen der Wellengleichung”, Acta Math., 62 (1933) | DOI | MR

[3] Bochner S., Neumann J. V., “On compact solutions of operational differential equations”, Ann. Math., 36 (1935) | DOI | MR

[4] Sobolev S. L., “O pochti-periodichnosti reshenii volnovogo uravneniya. I; II; III”, Dokl. AN SSSR, 48:8 (1945), 570–573; 9, 646–648; 49:1, 12–15 | Zbl

[5] Ararktsyan B. G., “O vykhode na pochti-periodicheskii rezhim reshenii granichnykh zadach dlya giperbolicheskogo uravneniya”, Tr. MI AN SSSR, 103, no. 2, M., 1968, 5–14 | Zbl

[6] Gabov S. A., Orazov B. B., “Ob uravnenii $\frac{\partial^2}{\partial t^2}[u_{xx}-u]+u_{xx}=0$ i nekotorykh svyazannykh s nimi zadachakh”, Zh. vychisl. matem. i matem. fiz., 26:1 (1986), 92–102 | MR | Zbl

[7] Iskenderov B. A., Sardarov V. Q., “Mixed problem for Boussinesq equation in cylindrical domain and behaviour of its solution as $t\to+\infty$”, Trans. Nat. Acad. Sci. of Azerbaijan, 22:4 (2002), 117–134 | MR | Zbl

[8] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[9] Mizotakha S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[10] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1958 | MR

[11] Iskenderov B. A., “Principles of radiation for elliptic equation in the cylindrical domain”, Colloquia Math. Soc. Janos Bolyai, Szeged, Hungary, 1988, 249–261 | MR

[12] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhteorizdat, M., 1953

[13] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 2, Izd-vo inostr. lit., M., 1961