Linear parametric problems of semi-infinite programming: a continuation method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 998-1014 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-parameter family of semi-infinite programming (SIP) problems is considered that depends on the parameter $\tau\in[0,\tau^*]$. An analysis of the sensitivity of solutions at a point $\tau=\tau_0\in[0,\tau^*]$ where the solution is nondifferentiable with respect to the parameter is conducted. Rules are described for constructing solutions to a family of SIP problems in a neighborhood of a given point $\tau_0$. A continuation method based on the results obtained is proposed, which uses an active-set strategy.
@article{ZVMMF_2005_45_6_a4,
     author = {E. A. Kostina and O. I. Kostyukova},
     title = {Linear parametric problems of semi-infinite programming: a~continuation method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {998--1014},
     year = {2005},
     volume = {45},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a4/}
}
TY  - JOUR
AU  - E. A. Kostina
AU  - O. I. Kostyukova
TI  - Linear parametric problems of semi-infinite programming: a continuation method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 998
EP  - 1014
VL  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a4/
LA  - ru
ID  - ZVMMF_2005_45_6_a4
ER  - 
%0 Journal Article
%A E. A. Kostina
%A O. I. Kostyukova
%T Linear parametric problems of semi-infinite programming: a continuation method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 998-1014
%V 45
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a4/
%G ru
%F ZVMMF_2005_45_6_a4
E. A. Kostina; O. I. Kostyukova. Linear parametric problems of semi-infinite programming: a continuation method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 998-1014. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a4/

[1] Kostina E. A., Kostyukova O. I., “Lineinye parametricheskie zadachi polubeskonechnogo programmirovaniya. Svoistva reshenii v okrestnosti neregulyarnoi tochki”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 775–791 | MR | Zbl

[2] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975 | MR | Zbl

[3] Allgower E. L., Georg K., Numerical continuation methods: An introduction, Springer, Berlin etc., 1990 | MR | Zbl

[4] Bannans F., Shapiro A., Perturbation analysis of optimization problems, Springer, New York, 2000 | MR

[5] Bonnans F., Cominetti R., “Perturbation optimization in banach space. II: A theory Based on a strong direction constraint qualification”, SIAM J. Control and Optimizat., 14:4 (1996), 1172–1189 | DOI | MR

[6] Bonnans F., Cominetti R., “Perturbation optimization in banach space. III: Semi-infinite optimization”, SIAM J. Control and Optimizat., 14:5 (1996), 1555–1567 | DOI | MR

[7] Stein O., Still G., “On generalized semi-infinite optimization and bilevel optimization”, European J. Operat. Res., 142 (2002), 444–462 | DOI | MR | Zbl

[8] Kostyukova O. I., “Metod prodolzheniya resheniya po parametru dlya semeistva zadach polubeskonechnogo programmirovaniya”, Vesti HAH Belarusi. Ser. fiz.-matem. nauk, 2002, no. 2, 5–10 | MR

[9] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl