Numerical search for equilibria in bimatrix games
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 983-997 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical search for Nash equilibria in a bimatrix game is analyzed by applying the variational approach. To solve an associated nonconvex mathematical programming problem, a modified global search algorithm is proposed that is based on global optimality conditions for this problem. The efficiency of the algorithm is demonstrated by numerical results.
@article{ZVMMF_2005_45_6_a3,
     author = {A. V. Orlov and A. S. Strekalovskii},
     title = {Numerical search for equilibria in bimatrix games},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {983--997},
     year = {2005},
     volume = {45},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a3/}
}
TY  - JOUR
AU  - A. V. Orlov
AU  - A. S. Strekalovskii
TI  - Numerical search for equilibria in bimatrix games
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 983
EP  - 997
VL  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a3/
LA  - ru
ID  - ZVMMF_2005_45_6_a3
ER  - 
%0 Journal Article
%A A. V. Orlov
%A A. S. Strekalovskii
%T Numerical search for equilibria in bimatrix games
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 983-997
%V 45
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a3/
%G ru
%F ZVMMF_2005_45_6_a3
A. V. Orlov; A. S. Strekalovskii. Numerical search for equilibria in bimatrix games. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 983-997. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a3/

[1] Germeier Yu. B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1976 | MR | Zbl

[2] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vyssh. shkola, M., 1998 | MR | Zbl

[3] Partkhasaratkhi G., Ragkhavan T., Nekotorye voprosy teorii igr dvukh lits, Mir, M., 1974

[4] McKelvey R. D., McLennan A., “Computation of equilibria in finite games”, Handbook of Computational Economics, v. 1, eds. H. M. Amman, D. A. Kendrick, J. Rust, Elseivier, Amsterdam, 1996, 87–142 | MR | Zbl

[5] Savani R., Stengel B., Long Lemke-Howson Paths, CDAM Res. Rep. LSE-CDAM-2003-14

[6] Mills H., “Equilibrium points in finite games”, J. Soc. Industr. and Appl. Math., 8:2 (1960), 397–402 | DOI | MR | Zbl

[7] Mukhamediev B. M., “O reshenii zadachi bilineinogo programmirovaniya i otyskanii vsekh situatsii ravnovesiya v bimatrichnykh igrakh”, Zh. vychisl. matem. i matem. fiz., 18:2 (1978), 351–359 | MR

[8] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003 | Zbl

[9] Horst R., Tuy H., Global Optimization. Deterministic Approaches, Springer, Berlin, 1993 | MR

[10] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[11] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl

[12] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[13] Strekalovskii A. S., “O minimizatsii raznosti vypuklykh funktsii na dopustimom mnozhestve”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 399–409 | MR | Zbl

[14] Orlov A. V., Strekalovskii A. S., “O poiske situatsii ravnovesiya v bimatrichnykh igrakh”, Avtomatika i telemekhan., 2004, no. 2, 55–68 | MR | Zbl

[15] Hiriart-Urruty J. B., “Generalized differentiability, duality and optimization for problem dealing with differences of convex functions”, Lect. Notes in Econom. and Math. Systems, 256, Springer, Berlin, 1985, 37–69 | MR

[16] Ashmanov S. A., Lineinoe programmirovanie, Nauka, M., 1981 | Zbl