@article{ZVMMF_2005_45_6_a2,
author = {A. F. Izmailov},
title = {On the analytical and numerical stability of critical {Lagrange} multipliers},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {966--982},
year = {2005},
volume = {45},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a2/}
}
TY - JOUR AU - A. F. Izmailov TI - On the analytical and numerical stability of critical Lagrange multipliers JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 966 EP - 982 VL - 45 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a2/ LA - ru ID - ZVMMF_2005_45_6_a2 ER -
A. F. Izmailov. On the analytical and numerical stability of critical Lagrange multipliers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 966-982. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a2/
[1] Robinson S. M., “Variational conditions with smooth constraints: structure and analysis”, Math. Program., 97:1–2 (2003), 245–265 | MR | Zbl
[2] Robinson S. M., “Strongly regular generalized equations”, Math. Operat. Res., 5 (1980), 43–62 | DOI | MR | Zbl
[3] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR
[4] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl
[5] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Matem. zametki, 67:1 (2000), 57–68 | MR | Zbl
[6] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Matem. sb., 191:1 (2000), 3–26 | MR | Zbl
[7] Arutyunov A. V., Izmailov A. F., “Teoriya chuvstvitelnosti dlya anormalnykh zadach optimizatsii s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 186–202 | MR | Zbl
[8] Izmailov A. F., “Neobkhodimye usloviya vysshikh poryadkov v zadachakh na ekstremum”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1310–1313 | MR | Zbl
[9] Izmailov A. F., Tretyakov A. A., Faktoranaliz nelineinykh otobrazhenii, Nauka, M., 1994
[10] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optim., 15:1 (2004), 210–228 | DOI | MR | Zbl
[11] Hager W. W., Gowda M. S., “Stability in the presence of degeneracy and error estimation”, Math. Program., 85 (1999), 181–192 | DOI | MR | Zbl
[12] Izmailov A. F., Solodov M. B., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR
[13] Fischer A., “Local behaviour of an iterative framework for generalized equations with nonisolated solutions”, Math. Program., 94 (2002), 91–124 | DOI | MR | Zbl
[14] Wright S. J., “Modifying SQP for degenerate problems”, SIAM J. Optimizat., 13 (2002), 470–497 | DOI | MR | Zbl
[15] Brezhneva O. A., Izmailov A. F., “O postroenii opredelyayuschikh sistem dlya otyskaniya osobykh reshenii nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 10–22 | MR | Zbl
[16] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl