On the analytical and numerical stability of critical Lagrange multipliers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 966-982 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

If the constraint qualification does not hold at a stationary point of a constrained optimization problem, then the corresponding Lagrange multiplier may not be unique. Moreover, in the set of multipliers, one can select special (so-called critical) multipliers possessing certain specific properties that are lacking in the other multipliers. In particular, it is the critical multipliers that are usually stable with respect to small perturbations, and it is the critical multipliers that attract trajectories of Newton's method as applied to the Lagrange system of equations. The present paper is devoted to an analysis of these issues.
@article{ZVMMF_2005_45_6_a2,
     author = {A. F. Izmailov},
     title = {On the analytical and numerical stability of critical {Lagrange} multipliers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {966--982},
     year = {2005},
     volume = {45},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a2/}
}
TY  - JOUR
AU  - A. F. Izmailov
TI  - On the analytical and numerical stability of critical Lagrange multipliers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 966
EP  - 982
VL  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a2/
LA  - ru
ID  - ZVMMF_2005_45_6_a2
ER  - 
%0 Journal Article
%A A. F. Izmailov
%T On the analytical and numerical stability of critical Lagrange multipliers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 966-982
%V 45
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a2/
%G ru
%F ZVMMF_2005_45_6_a2
A. F. Izmailov. On the analytical and numerical stability of critical Lagrange multipliers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 966-982. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a2/

[1] Robinson S. M., “Variational conditions with smooth constraints: structure and analysis”, Math. Program., 97:1–2 (2003), 245–265 | MR | Zbl

[2] Robinson S. M., “Strongly regular generalized equations”, Math. Operat. Res., 5 (1980), 43–62 | DOI | MR | Zbl

[3] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR

[4] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl

[5] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Matem. zametki, 67:1 (2000), 57–68 | MR | Zbl

[6] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Matem. sb., 191:1 (2000), 3–26 | MR | Zbl

[7] Arutyunov A. V., Izmailov A. F., “Teoriya chuvstvitelnosti dlya anormalnykh zadach optimizatsii s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 186–202 | MR | Zbl

[8] Izmailov A. F., “Neobkhodimye usloviya vysshikh poryadkov v zadachakh na ekstremum”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1310–1313 | MR | Zbl

[9] Izmailov A. F., Tretyakov A. A., Faktoranaliz nelineinykh otobrazhenii, Nauka, M., 1994

[10] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optim., 15:1 (2004), 210–228 | DOI | MR | Zbl

[11] Hager W. W., Gowda M. S., “Stability in the presence of degeneracy and error estimation”, Math. Program., 85 (1999), 181–192 | DOI | MR | Zbl

[12] Izmailov A. F., Solodov M. B., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR

[13] Fischer A., “Local behaviour of an iterative framework for generalized equations with nonisolated solutions”, Math. Program., 94 (2002), 91–124 | DOI | MR | Zbl

[14] Wright S. J., “Modifying SQP for degenerate problems”, SIAM J. Optimizat., 13 (2002), 470–497 | DOI | MR | Zbl

[15] Brezhneva O. A., Izmailov A. F., “O postroenii opredelyayuschikh sistem dlya otyskaniya osobykh reshenii nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 10–22 | MR | Zbl

[16] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl