On approximate quasi-classical representations of transition probabilities in nonstationary problems of quantum mechanics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1125-1133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following nonstationary problems are solved by the Feynman propagator method in the quasi-classical approximation: the nonstationary problem with a linear turning point, computation of the tunneling probability through a quasi-classical potential barrier in a weak nonstationary field, and the dissociation problem on a truncated harmonic oscillator.
@article{ZVMMF_2005_45_6_a13,
     author = {V. Kontorin},
     title = {On approximate quasi-classical representations of transition probabilities in nonstationary problems of quantum mechanics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1125--1133},
     year = {2005},
     volume = {45},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a13/}
}
TY  - JOUR
AU  - V. Kontorin
TI  - On approximate quasi-classical representations of transition probabilities in nonstationary problems of quantum mechanics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1125
EP  - 1133
VL  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a13/
LA  - ru
ID  - ZVMMF_2005_45_6_a13
ER  - 
%0 Journal Article
%A V. Kontorin
%T On approximate quasi-classical representations of transition probabilities in nonstationary problems of quantum mechanics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1125-1133
%V 45
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a13/
%G ru
%F ZVMMF_2005_45_6_a13
V. Kontorin. On approximate quasi-classical representations of transition probabilities in nonstationary problems of quantum mechanics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 6, pp. 1125-1133. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_6_a13/

[1] Kheding Dzh., Vvedenie v metod fazovykh integralov, Mir, M., 1965

[2] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[3] Dubrovskii G. V., Kontorin V. Yu., “Formuly svyazi VKB-reshenii, $S$-matritsa rasseyaniya i rezonansy”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 584–596 | MR

[4] Dubrovskii G. V., Kontorin V. Yu., “Detalnye formuly svyazi VKB-reshenii dlya potentsialnogo barera i yamy”, Differents. ur-niya s chastnymi proizvodnymi, Obrazovanie, SPb., 1992

[5] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968

[6] Laughlin Mc., “Complex time, contour independent path integrals and barrier penetration”, J. Math. Phys., 13:8 (1972), 1099–1108 | DOI | MR

[7] Freed K. F., “Path integrals and semi-classical tunneling, wave functions and energies”, J. Chem. Phys., 56:2 (1972), 692–697 | DOI

[8] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[9] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Fizmatlit, M., 2001

[10] Sidorov Yu. V., Fedoryuk M. V., Shabunin M. I., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1976 | MR | Zbl

[11] Sokolovskii D. G., Sumetskii M. Yu., “O rezonansnom tunnelirovanii cherez nestatsionarnyi potentsial”, Teor. i matem. fiz., 64:2 (1985), 233–244

[12] Ivlev B. I., Melnikov V. N., “Gigantskoe stimulirovanie tunnelnykh protsessov vysokochastotnym polem”, Pisma v ZhETF, 41:3 (1985), 116–118