Unstable even-parity eigenmodes of the regular static $\mathrm{SU}(2)$ Yang–Mills-dilaton solutions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 921-934 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Unstable even-parity eigenmodes of regular static solutions to the coupled system of $\mathrm{SU}(2)$ Yang–Mills-dilaton equations in the $3+1$ Minkowski space–time are obtained. The corresponding matrix Sturm–Liouville problem is solved numerically by applying a continuous analogue of Newton's method. This technique is also used to solve a boundary value problem and is described in detail in this paper.
@article{ZVMMF_2005_45_5_a9,
     author = {T. L. Boyadjiev and E. E. Donets and D. A. Georgieva and E. A. Hayryan and O. I. Streltsova},
     title = {Unstable even-parity eigenmodes of the regular static $\mathrm{SU}(2)$ {Yang{\textendash}Mills-dilaton} solutions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {921--934},
     year = {2005},
     volume = {45},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a9/}
}
TY  - JOUR
AU  - T. L. Boyadjiev
AU  - E. E. Donets
AU  - D. A. Georgieva
AU  - E. A. Hayryan
AU  - O. I. Streltsova
TI  - Unstable even-parity eigenmodes of the regular static $\mathrm{SU}(2)$ Yang–Mills-dilaton solutions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 921
EP  - 934
VL  - 45
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a9/
LA  - en
ID  - ZVMMF_2005_45_5_a9
ER  - 
%0 Journal Article
%A T. L. Boyadjiev
%A E. E. Donets
%A D. A. Georgieva
%A E. A. Hayryan
%A O. I. Streltsova
%T Unstable even-parity eigenmodes of the regular static $\mathrm{SU}(2)$ Yang–Mills-dilaton solutions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 921-934
%V 45
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a9/
%G en
%F ZVMMF_2005_45_5_a9
T. L. Boyadjiev; E. E. Donets; D. A. Georgieva; E. A. Hayryan; O. I. Streltsova. Unstable even-parity eigenmodes of the regular static $\mathrm{SU}(2)$ Yang–Mills-dilaton solutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 921-934. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a9/

[1] Bartnik R., McKinnon J., “Particlelike solutions of the Einstein–Yang–Mills equations”, Phys. Rev. Letts., 61 (1988), 141–144 | DOI | MR

[2] Gal'tsov D. V., Volkov M. S., “Sphalerons in Einstein–Yang–Mills theory”, Phys. Letts. B, 273 (1991), 255–259 | DOI | MR

[3] Volkov M. S., Gal'tsov D. V., “Odd-parity negative modes of Einstein–Yang–Mills black holes and sphalerons”, Phys. Letts. B, 341 (1995), 279–285 | DOI

[4] Breitenlohner P., Forgacs P., Maison D., “Static spherically symmetric solutions of the Einstein–Yang–Mills equations”, Communs Math. Phys., 163 (1994), 141–172 | DOI | MR | Zbl

[5] Gibbons G. W., Steif A. R., “Anomalous fermion production in gravitational collapse”, Phys. Letts. B, 314 (1993), 13–20 ; Volkov M. S., “Einstein–Yang–Mills sphalerons and fermion number non-conservation”, 328 (1994), 89–97 ; “Einstein–Yang–Mills sphalerons and level crossing”, 334, 40–52 | DOI | MR | DOI | DOI

[6] Lavrelashvili G., Maison D., “Static spherically symmetric solutions of a Yang–Mills field coupled to a dilaton”, Phys. Letts. B, 295 (1992), 67–72 | DOI | MR

[7] Donets E. E., Gal'tsov D. V., “Stringy sphalerons and non-Abelian black holes”, Phys. Letts. B, 302 (1993), 411–418 | DOI | MR

[8] Donets E. E., Gal'tsov D. V., “Charged stringy black holes with non-Abelian hair”, Phys. Letts. B, 312 (1993), 392–397 | MR

[9] Lavrelashvili G., Maison D., “Regular and black hole solutions of Einstein–Yang–Mills dilaton theory”, Nucl. Phys. B, 410 (1993), 407–422 | DOI | MR | Zbl

[10] Torii K., Maeda K., “Black holes with non-Abelian hair and their thermodynamical properties”, Phys. Rev. D, 48 (1993), 1643–1651 | DOI

[11] Donets E. E., Gal'tsov D. V., “Stringy sphalerons and Gauss–Bonnet term”, Phys. Letts. B, 352 (1995), 261–268 | DOI

[12] Volkov M. S., Gal'tsov D. V., “Gravitating non-Abelian solitons and black holes with Yang–Mills fields”, Phys. Rept., 319 (1999), 1–83 | DOI | MR

[13] Straumann N., Zhou Z., “Instability of the Bartnik–McKinnon solution of the Einstein–Yang–Mills equations”, Phys. Letts. B, 237 (1990), 353–356 ; “Instability of a colored black hole solution”, 243, 33–35 | DOI | MR | DOI

[14] Choptuik M. W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Letts., 70:1 (1993), 9–12 | DOI

[15] Choptuik M. W., Chmaj T., Bizon P., “Critical behavior in gravitational collapse of a Yang–Mills field”, Phys. Rev. Letts., 77:3 (1996), 424–427 | DOI

[16] Bizon P., Chmaj T., “Formation and critical collapse of Skyrmions”, Phys. Rev. D, 58 (1998), 041501 ; Bizon P., Chmaj T., Tabor Z., “Equivalence of critical collapse of non-Abelian fields”, 59 (1999), 104003 | DOI | DOI

[17] Gundlach C., “Echoing and scaling in Einstein–Yang–Mills critical collapse”, Phys. Rev. D, 55 (1997), 6002–6013 ; “Critical phenomena in gravitational collapse”, Phys. Rept., 376 (2003), 339–405 | DOI | MR | DOI | MR | Zbl

[18] Millward R. S., Hirschmann E. W., “Critical behavior of gravitating sphalerons”, Phys. Rev. D, 68 (2003), 024017 | DOI

[19] Bizon P., Tabor Z., “On blowup of Yang–Mills fields”, Phys. Rev. D, 64 (2001), 121701 | DOI | MR

[20] Bizon P., “Formation of singularities in Yang–Mills equations”, Acta Phys. Polon. B, 33 (2002), 1893–1922 | MR | Zbl

[21] Bizon P., Chmaj T., Tabor Z., “Dispersion and collapse of wave maps”, Nonlinearity, 13 (2000), 1411–1423 | DOI | MR | Zbl

[22] Linhart J. M., Numerical investigations of singularity formation in non-linear wave equations in the adiabatic limit, 2001, arXiv: math-ph/0105048 | MR | Zbl

[23] Klainerman S., Progress in nonlinear differential equations and their applications, 29, Birkhäuser, Berlin, 1997 | MR | Zbl

[24] Donets E. E., Streltsova O. I., Boyadjiev T. L., “Self-similarity and singularity formation in a coupled system of Yang–Mills-dilaton evolution equations”, Phys. Rev. D, 68 (2003), 125010 | DOI | MR

[25] Maison D., Static, spherically symmetric solutions of Yang–Mills-dilaton theory, arXiv: gr-qc/0405052 | MR

[26] Calogero F., “A novel approach to elementary scattering theory”, Nuovo Cimento, 27 (1963), 261–302 ; “A variational principle for scattering phase shifts”, 947–951 ; “The scattering of a Dirac particle on a central scalar potential”, 1007–1016 | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[27] Gavurin M. K., “Nonlinear functional equations and continuous analogues of iterative methods”, Izvestia VUZ. Matematika, 14 (1958), 18 (in Russian) | MR

[28] Zhidkov E. P., Puzynin I. V., “A method for introduction a parametes when solving boundary value problems for second-order nonlinear ordinary differential equation”, U.S.S.R. Comput. Math. and Math. Phys., 7:5 (1967), 1086–1095 | MR | Zbl

[29] Ponomarev L. I., Puzynin I. V., Puzynina T. P., Calculation of mesomolecules energy levels by means of continuous analog of Newtons, Preprint P4-6256, JINR, Dubna, 1972

[30] Puzynin I. V., Amirkhanov I. V., Zemlyanaya E. V. et al., “The generalized continuous analog of Newton's method for the numerical study of some nonlinear quantum-field models”, Phys. Part. and Nucl., 30 (1999), 87–110 | DOI

[31] Hayryan E. A., Buša J., Donets E. E. et al., Numerical studies of perturbed static solutions decay in the coupled system of Yang–Mills-dilaton equations with use of MPI technology, Preprint P11-2004-183, JINR, Dubna, 2004