@article{ZVMMF_2005_45_5_a6,
author = {B. V. Pal'tsev and I. I. Chechel'},
title = {Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for {Stokes} and stokes-type systems in a~spherical layer},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {846--889},
year = {2005},
volume = {45},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a6/}
}
TY - JOUR AU - B. V. Pal'tsev AU - I. I. Chechel' TI - Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 846 EP - 889 VL - 45 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a6/ LA - ru ID - ZVMMF_2005_45_5_a6 ER -
%0 Journal Article %A B. V. Pal'tsev %A I. I. Chechel' %T Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 846-889 %V 45 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a6/ %G ru %F ZVMMF_2005_45_5_a6
B. V. Pal'tsev; I. I. Chechel'. Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 846-889. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a6/
[1] Meller H. A., Paltsev B. V., Khlyupina E. G., “O konechno-elementnykh realizatsiyakh iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe. Osesimmetrichnyi sluchai”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 98–123 | MR | Zbl
[2] Meller N. A., Paltsev B. V., Khlyupina E. G., “O bilineinoi konechno-elementnoi realizatsii metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe v osesimmetrichnom sluchae”, Yubileinyi (elektronnyi) sb. tr. chlenov i sotrudnikov OIVTA RAN, posvyaschennyi 275-letiyu RAN, Razd. I, M., 1999, 8 pp.
[3] Meller N. A., Paltsev B. V., Khlyupina E. G., “O chislennom metode s rasschepleniem granichnykh uslovii dlya statsionarnoi sistemy Nave-Stoksa v sharovom sloe v sluchae osevoi simmetrii”, Differential Equations and Related Topics, Tezisy Mezhdunar. konf., posvyaschennoi 100-letiyu so dnya rozhdeniya akad. I. G. Petrovskogo, MGU, M., 2001, 311–313
[4] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s rasschepleniem granichnykh uslovii dlya mnogomernoi sistemy tipa Stoksa. Periodicheskie “techeniya” mezhdu parallelnymi stenkami”, Dokl. RAN, 325:5 (1992), 926–931 | MR
[5] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s nepolnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:4 (1994), 101–150 | MR
[6] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s polnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:9 (1994), 109–138 | MR
[7] Paltsev B. V., Chechel I. I., “O tochnykh otsenkakh skorosti skhodimosti iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v sloe s usloviem periodichnosti”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1823–1837 | MR
[8] Paltsev B. V., “O metodakh s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v oblastyakh s krugovoi simmetriei”, Funktsionalnye prostranstva. Differents. operatory. Probl. matem. obrazovaniya, Tr. Mezhdunar. konf., posvyaschennoi 75-letiyu chl.-korr. RAN, prof. L. D. Kudryavtseva, v. 2, Izd-vo RUDN, M., 1998, 124–128
[9] Paltsev B. V., “Ob usloviyakh skhodimosti iteratsionnykh metodov s polnym rasschepleniem granichnykh uslovii dlya sistemy Stoksa v share i sharovom sloe”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 935–963 | MR
[10] Paltsev B. V., “Optimizatsiya znachenii relaksatsionnykh parametrov odnoshagovogo varianta iteratsionnogo metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe”, Vestn. RUDN, 8:2 (2001), 74–90
[11] Paltsev B. V., Chechel I. I., “Algoritmy chislennykh realizatsii na osnove bilineinykh konechnykh elementov iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 37:7 (1997), 799–815 | MR
[12] Paltsev B. V., Chechel I. I., “O realnykh kachestvakh bilineinykh konechno-elementnykh realizatsii metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 247–261 | MR
[13] Paltsev B. V., Chechel I. I., “O nekotorykh sposobakh povysheniya skorosti skhodimosti na vysokikh garmonikakh bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 956–970 | MR
[14] Lozinskii A. S., “Ob uskorenii konechno-elementnykh realizatsii iteratsionnykh protsessov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v sloe s usloviem periodichnosti”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1339–1363 | MR
[15] Paltsev B. V., Chechel I. I., “O konechno-elementnykh tipa lineinykh, vtorogo poryadka tochnosti vplot do polyusov approksimatsiyakh operatorov Laplasa-Beltrami, gradienta i divergentsii na sfere v $\mathbb{R}^3$ v osesimmetrichnom sluchae”, Dokl. RAN, 395:3 (2004), 308–315 | MR
[16] Paltsev B. V., Chechel I. I., “Povyshenie skorosti skhodimosti bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa pri bolshikh znacheniyakh singulyarnogo parametra”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2049–2068 | MR
[17] Gelfand I. M., Lektsii po lineinei algebre, Nauka, M., 1966 | MR
[18] Belash V. O., Pal'tsev B. V., Chechel' I. I., “On convergence rate of some iterative methods for bilinear and bicubic finite clement schemes for the dissipative Helmholtz equation with large values of a singular parameter”, Russ. J. Numer. Analys. Math. Modelling, 17:6 (2002), 485–520 | MR | Zbl
[19] Paltsev B. V., “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Matem. sb., 187:4 (1996), 59–116 | MR
[20] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[21] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matem. nauk, 28:2 (1973), 121–182 | MR | Zbl
[22] Mc Cormick S. F., Ruge J. W., “Multigrid methods for variational problems”, SIAM J. Numer. Analys., 19:5 (1982), 924–929 | DOI | MR