Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 846-889 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Previously, numerical implementations of methods with splitting of boundary conditions for solving the first boundary value problem for Stokes and Stokes-type systems in a spherical layer with axial symmetry were developed on the basis of bilinear finite elements in a spherical coordinate system. These finite-element implementations are second-order accurate outside the neighborhood of the axis of symmetry, but their accuracy reduces near the axis of symmetry (down to the first order for pressure). Recently, new linear-type second-order accurate (up to the poles) finite-element approximations of the Laplace–Beltrami operators and the angular components of the gradient and divergence operators on a sphere in $\mathbb R^3$ in the axisymmetric case, as well as corresponding finite-element spaces, have been found by the authors. These finite-element approximations and spaces are used here to modify the above finite-element implementations of methods with splitting of boundary conditions for Stokes and Stokes-type systems. The finite-element schemes arising at iterations are written using one-dimensional tridiagonal operators with respect to angular and radial variables, which makes it possible to accelerate the computations nearly twofold. Numerical experiments reveal that the modified finite-element implementations of methods are second-order accurate with respect to the mesh size in the max-norm over the entire spherical layer. The new numerical method for the Stokes system is highly accurate with respect to both velocity and pressure. At the same time, in actual cases arising in implicit time discretizations of an initial-boundary value problem for the nonstationary Stokes system, when the singular parameter is large and the time step $\tau$ is small, the numerical methods constructed for Stokes-type systems become highly inaccurate with respect to pressure, while preserving sufficient accuracy of velocity. It is shown that sufficiently high accuracy of both velocity and pressure can be achieved under the condition $\tau\sim h$, where $h$ is the characteristic mesh size of the spatial grid. A numerical experiment is described that shows how the accuracy of numerical solutions can be considerably improved for such Stokes-type systems occurring in reality.
@article{ZVMMF_2005_45_5_a6,
     author = {B. V. Pal'tsev and I. I. Chechel'},
     title = {Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for {Stokes} and stokes-type systems in a~spherical layer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {846--889},
     year = {2005},
     volume = {45},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a6/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
AU  - I. I. Chechel'
TI  - Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 846
EP  - 889
VL  - 45
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a6/
LA  - ru
ID  - ZVMMF_2005_45_5_a6
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%A I. I. Chechel'
%T Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 846-889
%V 45
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a6/
%G ru
%F ZVMMF_2005_45_5_a6
B. V. Pal'tsev; I. I. Chechel'. Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 846-889. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a6/

[1] Meller H. A., Paltsev B. V., Khlyupina E. G., “O konechno-elementnykh realizatsiyakh iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe. Osesimmetrichnyi sluchai”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 98–123 | MR | Zbl

[2] Meller N. A., Paltsev B. V., Khlyupina E. G., “O bilineinoi konechno-elementnoi realizatsii metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe v osesimmetrichnom sluchae”, Yubileinyi (elektronnyi) sb. tr. chlenov i sotrudnikov OIVTA RAN, posvyaschennyi 275-letiyu RAN, Razd. I, M., 1999, 8 pp.

[3] Meller N. A., Paltsev B. V., Khlyupina E. G., “O chislennom metode s rasschepleniem granichnykh uslovii dlya statsionarnoi sistemy Nave-Stoksa v sharovom sloe v sluchae osevoi simmetrii”, Differential Equations and Related Topics, Tezisy Mezhdunar. konf., posvyaschennoi 100-letiyu so dnya rozhdeniya akad. I. G. Petrovskogo, MGU, M., 2001, 311–313

[4] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s rasschepleniem granichnykh uslovii dlya mnogomernoi sistemy tipa Stoksa. Periodicheskie “techeniya” mezhdu parallelnymi stenkami”, Dokl. RAN, 325:5 (1992), 926–931 | MR

[5] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s nepolnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:4 (1994), 101–150 | MR

[6] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s polnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:9 (1994), 109–138 | MR

[7] Paltsev B. V., Chechel I. I., “O tochnykh otsenkakh skorosti skhodimosti iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v sloe s usloviem periodichnosti”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1823–1837 | MR

[8] Paltsev B. V., “O metodakh s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v oblastyakh s krugovoi simmetriei”, Funktsionalnye prostranstva. Differents. operatory. Probl. matem. obrazovaniya, Tr. Mezhdunar. konf., posvyaschennoi 75-letiyu chl.-korr. RAN, prof. L. D. Kudryavtseva, v. 2, Izd-vo RUDN, M., 1998, 124–128

[9] Paltsev B. V., “Ob usloviyakh skhodimosti iteratsionnykh metodov s polnym rasschepleniem granichnykh uslovii dlya sistemy Stoksa v share i sharovom sloe”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 935–963 | MR

[10] Paltsev B. V., “Optimizatsiya znachenii relaksatsionnykh parametrov odnoshagovogo varianta iteratsionnogo metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe”, Vestn. RUDN, 8:2 (2001), 74–90

[11] Paltsev B. V., Chechel I. I., “Algoritmy chislennykh realizatsii na osnove bilineinykh konechnykh elementov iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 37:7 (1997), 799–815 | MR

[12] Paltsev B. V., Chechel I. I., “O realnykh kachestvakh bilineinykh konechno-elementnykh realizatsii metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 247–261 | MR

[13] Paltsev B. V., Chechel I. I., “O nekotorykh sposobakh povysheniya skorosti skhodimosti na vysokikh garmonikakh bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 956–970 | MR

[14] Lozinskii A. S., “Ob uskorenii konechno-elementnykh realizatsii iteratsionnykh protsessov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v sloe s usloviem periodichnosti”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1339–1363 | MR

[15] Paltsev B. V., Chechel I. I., “O konechno-elementnykh tipa lineinykh, vtorogo poryadka tochnosti vplot do polyusov approksimatsiyakh operatorov Laplasa-Beltrami, gradienta i divergentsii na sfere v $\mathbb{R}^3$ v osesimmetrichnom sluchae”, Dokl. RAN, 395:3 (2004), 308–315 | MR

[16] Paltsev B. V., Chechel I. I., “Povyshenie skorosti skhodimosti bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa pri bolshikh znacheniyakh singulyarnogo parametra”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2049–2068 | MR

[17] Gelfand I. M., Lektsii po lineinei algebre, Nauka, M., 1966 | MR

[18] Belash V. O., Pal'tsev B. V., Chechel' I. I., “On convergence rate of some iterative methods for bilinear and bicubic finite clement schemes for the dissipative Helmholtz equation with large values of a singular parameter”, Russ. J. Numer. Analys. Math. Modelling, 17:6 (2002), 485–520 | MR | Zbl

[19] Paltsev B. V., “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Matem. sb., 187:4 (1996), 59–116 | MR

[20] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[21] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matem. nauk, 28:2 (1973), 121–182 | MR | Zbl

[22] Mc Cormick S. F., Ruge J. W., “Multigrid methods for variational problems”, SIAM J. Numer. Analys., 19:5 (1982), 924–929 | DOI | MR