Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 775-791
Voir la notice de l'article provenant de la source Math-Net.Ru
A one-parametric family of semi-infinite programming problems depending on a parameter $\tau\in[0,\tau^*]$ is considered. The sensitivity of the solution at an arbitrary point $\tau=\tau_0\in[0,\tau^*]$ is analyzed. Rules for the construction of solutions to this family for $\tau$ from a neighborhood of the point $\tau_0$ are described. The differentiability of the solutions with respect to the parameter is examined, and rules for the calculation of one-sided derivatives are presented.
@article{ZVMMF_2005_45_5_a2,
author = {E. A. Kostina and O. I. Kostyukova},
title = {Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {775--791},
publisher = {mathdoc},
volume = {45},
number = {5},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a2/}
}
TY - JOUR AU - E. A. Kostina AU - O. I. Kostyukova TI - Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 775 EP - 791 VL - 45 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a2/ LA - ru ID - ZVMMF_2005_45_5_a2 ER -
%0 Journal Article %A E. A. Kostina %A O. I. Kostyukova %T Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 775-791 %V 45 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a2/ %G ru %F ZVMMF_2005_45_5_a2
E. A. Kostina; O. I. Kostyukova. Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 775-791. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a2/