Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 775-791 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-parametric family of semi-infinite programming problems depending on a parameter $\tau\in[0,\tau^*]$ is considered. The sensitivity of the solution at an arbitrary point $\tau=\tau_0\in[0,\tau^*]$ is analyzed. Rules for the construction of solutions to this family for $\tau$ from a neighborhood of the point $\tau_0$ are described. The differentiability of the solutions with respect to the parameter is examined, and rules for the calculation of one-sided derivatives are presented.
@article{ZVMMF_2005_45_5_a2,
     author = {E. A. Kostina and O. I. Kostyukova},
     title = {Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {775--791},
     year = {2005},
     volume = {45},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a2/}
}
TY  - JOUR
AU  - E. A. Kostina
AU  - O. I. Kostyukova
TI  - Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 775
EP  - 791
VL  - 45
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a2/
LA  - ru
ID  - ZVMMF_2005_45_5_a2
ER  - 
%0 Journal Article
%A E. A. Kostina
%A O. I. Kostyukova
%T Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 775-791
%V 45
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a2/
%G ru
%F ZVMMF_2005_45_5_a2
E. A. Kostina; O. I. Kostyukova. Linear parametric semi-infinite programming problems and properties of their solutions in a neighborhood of irregular points. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 775-791. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a2/

[1] Gabasov R., Kirillova F. M., Kostyukova O. I., “Algoritm optimizatsii v rezhime realnogo vremeni ne polnostyu opredelennoi lineinoi sistemy upravleniya”, Avtomatika i telemekhan., 1993, no. 5, 19–27 | MR | Zbl

[2] Hettich R., Kortanek O., “Semi-infinite programming: theory, methods, and applications”, SIAM Rev., 35:3 (1993), 380–429 | DOI | MR | Zbl

[3] Hettich R., “Some recent results in parametric semi-infinite programming”, Optimization, 32 (1995), 359–372 | DOI | MR | Zbl

[4] Jongen Th., Stein O., “On generic one-parametric semi-infinite optimization”, SIAM J. Optimizat., 7:4 (1997), 1103–1137 | DOI | MR | Zbl

[5] Rupp T., “Kuhn-Tucker curves for one-parametric semi-infinite programming”, Optimization, 20:1 (1989), 61–77 | DOI | MR | Zbl

[6] Shapiro A., “Directional differentiability of the optimal value function in convex semi-infinite programming”, Math. Program., 70 (1995), 149–157 | MR | Zbl

[7] Tiahrt C. A., Poore A. B., “A bifurcation analysis of the nonlinear parametric programming problem”, Math. Program., 47:1 (1990), 117–141 | DOI | MR | Zbl

[8] Zencke P., Hettich R., “Directional derivatives for the value-function in semi-infinite programming problems”, Math. Program., 38 (1987), 323–340 | DOI | MR | Zbl

[9] Bonnans F., Shapiro A., Perturbation analysis of optimization problems, Springer, New York, 2000 | MR

[10] Bonnans F., Cominetti R., “Perturbation optimization in Banach space. I: A general theory based on a weak directional constraint qualification”, SIAM J. Control Optimizat., 14:4 (1996), 1151–1171 | DOI | MR

[11] Bonnans F., Cominetti R., “Perturbation optimization in Banach space. II: A theory based on a strong directional constraint qualification”, SIAM J. Control Optimizat., 14:4 (1996), 1172–1189 | DOI | MR

[12] Bonnans F., Cominetti R., “Perturbation optimization in banach space. III: Semi-infinite optimization”, SIAM J. Control Optimizat., 14:5 (1996), 1555–1567 | DOI | MR

[13] Kostyukova O. A., “Algorithm for constructing solutions for a family of linear semi-infinite problems”, J. Optimizat. Theory and Appl., 110:3 (2001), 585–609 | DOI | MR | Zbl

[14] Stein O., Still G., “On generalized semi-infinite optimization and bilevel optimization”, European J. Operat. Res., 142 (2002), 444–462 | DOI | MR | Zbl

[15] Allgower E. L., Georg K., Numerical continuation methods: An introduction, Springer, New York, 1990 | MR | Zbl

[16] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971 | MR

[17] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975 | MR | Zbl

[18] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[19] Kostyukova O. I., Issledovanie lineinykh ekstremalnykh zadach s kontinuumom ogranichenii, Preprint No 26 (336), In-t matem. ANB SSR, Minsk, 1988, 24 pp.

[20] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969 | MR