On the number of irreducible coverings of an integer matrix
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 935-940
Voir la notice de l'article provenant de la source Math-Net.Ru
The metric (quantitative) properties of the set of coverings of an integer matrix are examined. an asymptotic estimate for the logarithm of the typical number of irredundant $\sigma$-coverings is obtained in the case when the number of rows in the matrix is not smaller than the number of its columns. as a consequence, a similar estimate is derived for the number of maximal conjunctions of a boolean function of $n$ variables with the number of zeros no less than $n$.
@article{ZVMMF_2005_45_5_a10,
author = {E. V. Dyukova},
title = {On the number of irreducible coverings of an integer matrix},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {935--940},
publisher = {mathdoc},
volume = {45},
number = {5},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a10/}
}
TY - JOUR AU - E. V. Dyukova TI - On the number of irreducible coverings of an integer matrix JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 935 EP - 940 VL - 45 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a10/ LA - ru ID - ZVMMF_2005_45_5_a10 ER -
E. V. Dyukova. On the number of irreducible coverings of an integer matrix. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 935-940. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a10/