Optimal parametrization in approximation of curves and surfaces
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 760-774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Interpolation and smoothing of curves and surfaces by parametric functions are considered. Necessary and sufficient conditions for the optimal choice of the parameters for the approximation of curves and surfaces are formulated and proved. Various parametrization methods are compared. Numerical examples of solving test problems are presented.
@article{ZVMMF_2005_45_5_a1,
     author = {E. B. Kuznetsov and A. Yu. Yakimovitch},
     title = {Optimal parametrization in approximation of curves and surfaces},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {760--774},
     year = {2005},
     volume = {45},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a1/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
AU  - A. Yu. Yakimovitch
TI  - Optimal parametrization in approximation of curves and surfaces
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 760
EP  - 774
VL  - 45
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a1/
LA  - ru
ID  - ZVMMF_2005_45_5_a1
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%A A. Yu. Yakimovitch
%T Optimal parametrization in approximation of curves and surfaces
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 760-774
%V 45
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a1/
%G ru
%F ZVMMF_2005_45_5_a1
E. B. Kuznetsov; A. Yu. Yakimovitch. Optimal parametrization in approximation of curves and surfaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 5, pp. 760-774. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_5_a1/

[1] Foks A., Pratt M., Vychislitelnaya geometriya, Mir, M., 1982 | MR

[2] Hoschek J., Lasser D., Fundamentals of computer aided geometric design, AKPeters Ltd., Wellesley, Massachusetts, 1993 | MR

[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[4] Zavyalov Yu. S., Leus V. A., Skorospelov V. A., Splainy v inzhenernoi geometrii, Mashinostroenie, M., 1985 | MR

[5] Lee E. T. Y., “Choosing nodes in parametric curve interpolation”, Computer-Aided Design, 1989, no. 21, 363–370 | DOI | Zbl

[6] Nielson G. M., Foley Th. A., “A survey of applications of an affine invariant metric”, Math. Methods in Comput. Aided Geometric Design, Acad. Press, New York, 1989, 261–272 | MR

[7] Foley Th. A., Nielson G. M., “Knot selection for parametric spline interpolation”, Math. Methods in Comput. Aided Geometric Design, Acad. Press, New York, 1989, 261–272 | MR

[8] Nikulin E. A., Kompyuternaya geometriya i algoritmy mashinnoi grafiki, BKhV-Peterburg, SPb., 2003

[9] Kuznetsov E. B., Shalashilin V. I., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999 | MR

[10] Kuznetsov E. B., Shalashilin V. I., “O nailuchshei mnogomernoi parametrizatsii”, Differents. ur-niya, 3:6 (2000), 841–843 | MR

[11] Trenogin V. A., “Teorema Lyusternika i nailuchshaya parametrizatsiya”, Funkts. analiz i ego prilozh., 32:1 (1998), 87–90 | MR | Zbl

[12] Ortega Dzh. M., Pul U. Dzh., Vvedenie v chislennye metody dlya resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl

[13] Sendov B., Khausdorfovy priblizheniya, Bolgarskaya AN, Sofiya, 1979

[14] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2002

[15] Kuznetsov E. B., Shalashilin V. I., “Parametricheskoe priblizhenie”, Zh. vychisl. matem. i matem. fiz., 34:12 (1994), 1757–1769 | MR | Zbl

[16] Kurosh A. G., Kurs vysshei algebry, Fizmatlit, M., 1963 | MR