Exponentially fitted scheme for a singularly perturbed problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 669-676 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A singularly perturbed problem with a turning point is considered. Its approximate solution is found by applying an exponentially fitted scheme on an equidistant mesh. The solutions produced by the scheme are proved to converge uniformly with respect to the perturbation parameter to the solution of the original differential problem within the first order accuracy.
@article{ZVMMF_2005_45_4_a9,
     author = {K. V. Emel'yanov},
     title = {Exponentially fitted scheme for a singularly perturbed problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {669--676},
     year = {2005},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a9/}
}
TY  - JOUR
AU  - K. V. Emel'yanov
TI  - Exponentially fitted scheme for a singularly perturbed problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 669
EP  - 676
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a9/
LA  - ru
ID  - ZVMMF_2005_45_4_a9
ER  - 
%0 Journal Article
%A K. V. Emel'yanov
%T Exponentially fitted scheme for a singularly perturbed problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 669-676
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a9/
%G ru
%F ZVMMF_2005_45_4_a9
K. V. Emel'yanov. Exponentially fitted scheme for a singularly perturbed problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 669-676. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a9/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[3] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[5] Emelyanov K. V., “Primenenie optimalnykh raznostnykh setok k resheniyu zadach s singulyarnym vozmuscheniem”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 936–943 | MR

[6] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[7] Fedorov D. V., “O chislennom reshenii kraevykh zadach dlya lineinykh obyknovennykh differentsialnykh uravnenii s malym parametrom pri starshei proizvodnoi”, Dokl. RAN, 396:4 (2004), 460–464 | MR | Zbl

[8] Emelyanov K. V., “On optimal grids and their application to the solution of problems with a singular perturbation”, Russ. J. Numer. Analys. and Math. Modelling, 10:4 (1995), 299–309 | DOI | MR | Zbl

[9] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[10] Emelyanov K. V., “O raznostnoi skheme dlya uravneniya $\varepsilon\Delta u+au_{x_1}=f$”, Raznostnye metody resheniya kraevykh zadach s malym parametrom i razryvnymi kraevymi usloviyami, 21, UNTs IMM AN SSSR, Sverdlovsk, 1976, 19–37

[11] Sidorov A. F., “Ob odnom algoritme rascheta optimalnykh raznostnykh setok”, Tr. MIAN SSSR, 74, M., 1966, 147–151 | MR | Zbl

[12] Shirkovskaya O. S., “Zamechaniya k state: A. F. Sidorov, Ob odnom algoritme rascheta optimalnykh raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 9:2 (1969), 468–469