A regularized continuous first-order prediction linearization method with a variable metric for solving equilibrium programming problems with an inaccurately prescribed set
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 637-649 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A regularized continuous variant of the first-order prediction linearization method in a variable-metric space is proposed for solving equilibrium problems with an inaccurately prescribed set. The convergence of the trajectory to a normal solution to this problem for an arbitrarily chosen initial point is proved. A regularizing operator is constructed.
@article{ZVMMF_2005_45_4_a6,
     author = {A. B. Budak},
     title = {A regularized continuous first-order prediction linearization method with a variable metric for solving equilibrium programming problems with an inaccurately prescribed set},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {637--649},
     year = {2005},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a6/}
}
TY  - JOUR
AU  - A. B. Budak
TI  - A regularized continuous first-order prediction linearization method with a variable metric for solving equilibrium programming problems with an inaccurately prescribed set
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 637
EP  - 649
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a6/
LA  - ru
ID  - ZVMMF_2005_45_4_a6
ER  - 
%0 Journal Article
%A A. B. Budak
%T A regularized continuous first-order prediction linearization method with a variable metric for solving equilibrium programming problems with an inaccurately prescribed set
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 637-649
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a6/
%G ru
%F ZVMMF_2005_45_4_a6
A. B. Budak. A regularized continuous first-order prediction linearization method with a variable metric for solving equilibrium programming problems with an inaccurately prescribed set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 637-649. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a6/

[1] Budak B. A., “Nepreryvnyi metod linearizatsii pervogo poryadka s peremennoi metrikoi dlya resheniya zadach ravnovesnogo programmirovaniya”, Vestn. MGU. Ser. 15. Vychisl matem. i kibernetika, 2004, no. 2, 20–26 | MR | Zbl

[2] Antipin A. C., “Metod vnutrennei linearizatsii dlya zadach ravnovesnogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1142–1162 | MR

[3] Antipin A. S., “Linearization method for solving equilibrium programming problems. Optimization”, Lect. Notes in Econom. and Math. Systems, 481, Springer, Berlin, 2000, 1–24 | MR | Zbl

[4] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[5] Antipin A. S., Vasilev F. P., “Metod regulyarizatsii poiska nepodvizhnoi tochki ekstremalnykh otobrazhenii”, Vestn. MGU. Ser. 15. Vychisl matem. i kibernetika, 2003, no. 1, 11–14 | MR

[6] Shpirko C. B., “O suschestvovanii i edinstvennosti resheniya zadachi ravnovesnogo programmirovaniya”, Izv. vuzov. Ser. Matematika, 2002, no. 12, 79–83 | MR