Numerical optimization of time-dependent multidimensional systems under polyhedral constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 617-636 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of open-loop and closed-loop optimal controls of linear time-dependent systems with multiple inputs is considered when the controls satisfy polyhedral constraints. The problem is solved using linear programming methods that are adapted with regard for the specific features of the model and the constraints. The optimal controls are found by a dual method. The feedback optimal controls are synthesized using an optimal regulator, which is based on the dual method. This enables us to compute the current values of the optimal feedback in real time for every particular control process. The efficiency of the proposed methods is illustrated using a fifth-order optimal control as an example.
@article{ZVMMF_2005_45_4_a5,
     author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova},
     title = {Numerical optimization of time-dependent multidimensional systems under polyhedral constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {617--636},
     year = {2005},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a5/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - N. M. Dmitruk
AU  - F. M. Kirillova
TI  - Numerical optimization of time-dependent multidimensional systems under polyhedral constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 617
EP  - 636
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a5/
LA  - ru
ID  - ZVMMF_2005_45_4_a5
ER  - 
%0 Journal Article
%A R. Gabasov
%A N. M. Dmitruk
%A F. M. Kirillova
%T Numerical optimization of time-dependent multidimensional systems under polyhedral constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 617-636
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a5/
%G ru
%F ZVMMF_2005_45_4_a5
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. Numerical optimization of time-dependent multidimensional systems under polyhedral constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 617-636. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a5/

[1] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971 | MR

[2] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[3] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zh. vychisl. matem. i matem. fiz., 40:6 (2000), 838–859 | MR | Zbl

[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[5] Gabasov R., Kirillova F. M., Optimizatsiya lineinykh sistem, Izd-vo BGU, Minsk, 1973

[6] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii, v. 1, Lineinye zadachi, Universitetskoe, Minsk, 1984 | MR

[7] Gabasov R., Kirillova F. M., Kostyukova O. I., “Postroenie optimalnykh upravlenii tipa obratnoi svyazi v lineinoi zadache”, Dokl. AN SSSR, 320:6 (1991), 1294–1299 | MR

[8] Gabasov R., Kirillova F. M., Prischepova S. V., Optimal feedback control, Lect. Notes in Control and Inform. Sci., 207, Springer, Berlin, 1995 | MR | Zbl

[9] Balashevich H. V., Gabasov R., Kirillova F. M., “Suboptimalnyi regulyator, sglazhivayuschii upravleniya i filtruyuschii vysokochastotnye vozmuscheniya na uchastkakh skolzheniya”, Izv. RAN. Tekhn. kibernetika, 1993, no. 6, 25–32 | MR | Zbl