On the Euclidean distance to the set of matrices with a multiple zero eigenvalue
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 587-591
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $M_n(\mathbb C)$ be the set of $n$-by-$n$ complex matrices ($n>2$), and let $\mathcal K$ and $\mathcal L$ be the subsets of $M_n(\mathbb C)$ consisting of the matrices with a rank not greater than $n-2$ and of the matrices with a multiple zero eigenvalue, respectively. It is known that the minimal distance from a matrix $A\in M_n(\mathbb C)$ to the matrices in $\mathcal K$ is attained at the same matrix $K_A$ for both the spectral and Euclidean norm. It is shown that, for the set $\mathcal L$, similar minimal distances are attained, in the general case, at different matrices in $\mathcal L$. Moreover, the Euclidean distance from $A$ to $\mathcal L$ is, in general, strictly less than the Euclidean distance from $A$ to $\mathcal K$.
@article{ZVMMF_2005_45_4_a2,
author = {Kh. D. Ikramov},
title = {On the {Euclidean} distance to the set of matrices with a multiple zero eigenvalue},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {587--591},
year = {2005},
volume = {45},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a2/}
}
TY - JOUR AU - Kh. D. Ikramov TI - On the Euclidean distance to the set of matrices with a multiple zero eigenvalue JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 587 EP - 591 VL - 45 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a2/ LA - ru ID - ZVMMF_2005_45_4_a2 ER -
Kh. D. Ikramov. On the Euclidean distance to the set of matrices with a multiple zero eigenvalue. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 587-591. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a2/
[1] Eckart C., Young G., “The approximation of one matrix by another of lower rank”, Psychometrika, 1 (1936), 211–218 | DOI | Zbl
[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR
[3] Malyshev A. N., “A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues”, Numer. Math., 83 (1999), 443–454 | DOI | MR | Zbl
[4] Ikramov Kh. D., Nazari A. M., “Ob odnom zamechatelnom sledstvii formuly Malysheva”, Dokl. RAN, 385:5 (2002), 599–600 | MR