On the application of computer measurement systems in tomography
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 741-752 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the theory of computer measurement systems, a method for the estimation of the internal structure of an object is proposed that takes into account the inherent symmetry of the tomography measuring scheme. The method is based on the concepts of eigenbasis and effective rank of the measurement model. The projection of the data vector on the subspace that ensures the minimal error of the estimate of the linear absorption coefficient makes it possible to reduce the dimension of the problem. The efficiency of the method is illustrated by a computational experiment.
@article{ZVMMF_2005_45_4_a14,
     author = {E. A. Cheremukhin and A. I. Chulichkov},
     title = {On the application of computer measurement systems in tomography},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {741--752},
     year = {2005},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a14/}
}
TY  - JOUR
AU  - E. A. Cheremukhin
AU  - A. I. Chulichkov
TI  - On the application of computer measurement systems in tomography
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 741
EP  - 752
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a14/
LA  - ru
ID  - ZVMMF_2005_45_4_a14
ER  - 
%0 Journal Article
%A E. A. Cheremukhin
%A A. I. Chulichkov
%T On the application of computer measurement systems in tomography
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 741-752
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a14/
%G ru
%F ZVMMF_2005_45_4_a14
E. A. Cheremukhin; A. I. Chulichkov. On the application of computer measurement systems in tomography. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 741-752. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a14/

[1] Pytev Yu. P., Metody matematicheskogo modelirovaniya izmeritelno-vychislitelnykh sistem, Fizmatlit, M., 2002 | MR

[2] Pytev Yu. P., Matematicheskie metody interpretatsii eksperimenta, Vyssh. shkola, M., 1989

[3] Chulichkov A. I., Osnovy teorii izmeritelno-vychislitelnykh sistem sverkhvysokogo razresheniya. Lineinye stokhasticheskie izmeritelno-vychislitelnye sistemy, Izd-vo TGTU, Tambov, 2000

[4] Bondarenko S. P., Pytev Yu. P., “Ob effektivnom range modeli lineinykh izmerenii s oshibkoi”, Zh. vychisl. matem. i matem. fiz., 35:1 (1995), 6–23 | MR | Zbl

[5] Natterer F., Osnovy kompyuternoi tomografii, Mir, M., 1991

[6] Shepp L. A., Logan B. F., “The Fourier reconstruction of a head section”, IEEE Trans. Nucl. Sci. NS, 21 (1974), 21–43 | DOI