@article{ZVMMF_2005_45_4_a1,
author = {S. L. Skorokhodov},
title = {A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {574--586},
year = {2005},
volume = {45},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a1/}
}
TY - JOUR
AU - S. L. Skorokhodov
TI - A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2005
SP - 574
EP - 586
VL - 45
IS - 4
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a1/
LA - ru
ID - ZVMMF_2005_45_4_a1
ER -
%0 Journal Article
%A S. L. Skorokhodov
%T A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 574-586
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a1/
%G ru
%F ZVMMF_2005_45_4_a1
S. L. Skorokhodov. A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 574-586. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a1/
[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973
[2] Nörlund N. E., “Hypergeometric functions”, Acta Math., 94:3–4 (1955), 289–349 | DOI | MR
[3] Slater L. J., Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl
[4] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980
[5] Knut D., Iskusstvo programmirovaniya na EVM, v. 3, Sortirovka i poisk, Nauka, M., 1973
[6] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl
[7] Petkovsek M., Wilf H. S., Zeilberger D., $A=B$, A. K. Peters, Wellesley, Massachusetts, 1996 | MR | Zbl
[8] Exton H., Multiple hypergeometric functions and applications, New York, Chichester, 1976 | MR
[9] Suzuki A. T., Schmidt A. G. M., “Loop integrals in three outstanding gauges: Feynman, light-cone, and Coulomb”, J. Comput. Phys., 168:1 (2001), 207–218 | DOI | MR | Zbl
[10] Davydychev A. I., Kalmykov M. Yu., Massive Feynman diagrams and inverse binomial sums, DESY 02-214, Dresden, March 2003, 29 pp., arXiv: hep-th/0303162 | MR
[11] Marichev O. I., Metody vychisleniya integralov ot spetsialnykh funktsii, Nauka i tekhn., Minsk, 1978 | MR
[12] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl
[13] Crandall R. E., Topics in advanced scientific computation, Springer, New York, 1996 | MR
[14] Bühring W., Srivastava H. M., “Analytic continuation of the generalized hypergeometric series near unit argument with emphasis on the zero-balanced series”, Approximation Theory and Applic., Hadronic Press, Palm Harbor, Florida, 1998, 17–35 | MR
[15] Bühring W., “Partial sums of hypergeometric series of unit argument”, Proc. Amer. Math. Soc., 132 (2004), 407–415 | DOI | MR
[16] Henrici P., Applied and computational complex analysis, v. I, J. Willey Sons, New York, 1988 ; v. II, 1991 ; v. III, 1985 | MR | Zbl | Zbl
[17] Knopp K., “Über das Eulerische Summierungsverfahren”, Math. Z., 15:3 (1922), 226–253 ; 18:1/2 (1923), 125–156 | DOI | MR | Zbl | DOI | MR | Zbl
[18] Khardi G., Raskhodyaschiesya ryady, Izd-vo inostr. lit., M., 1951
[19] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR
[20] Sternin B., Schatalov V., Borel–Laplace transform and asymptotic theory: Introduction to resurgent analysis, CRC-Press, New York, 1995 | MR
[21] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR
[22] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | MR | Zbl
[23] Kerimov M. K., “O metodakh vychisleniya dzeta-funktsii Rimana i nekotorykh ee obobschenii”, Zh. vychisl. matem. i matem. fiz., 20:6 (1980), 1580–1597 | MR | Zbl
[24] Borwein J. M., Bradley D. M., Crandall R. E., “Computational strategies for the Riemann zeta function”, J. Comput. and Appl. Math., 121:1–2 (2000), 247–296 | DOI | MR | Zbl
[25] Odlyzko A. M., Schönhage A., “Fast algorithms for multiple evaluations of the Riemann zeta function”, Trans. Amer. Math. Soc., 309:2 (1988), 797–809 | DOI | MR | Zbl
[26] Skorokhodov S. L., “Advanced techniques for computing divergent series”, Nucl. Instrum. Methods in Phys. Res., 502 (2003), 636–638 | DOI
[27] Skorokhodov S. L., “Approksimatsii Pade i chislennyi analiz dzeta-funktsii Rimana”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1330–1352 | MR | Zbl
[28] Skorokhodov S. L., “Metody analiticheskogo prodolzheniya obobschennykh gipergeometricheskikh funktsii ${}_pF_{p-1}(a_1, \dots, a_p; b_1, \dots, b_{p-1}; z)$”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1164–1186 | MR | Zbl
[29] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl
[30] http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html
[31] Skorokhodov S. L., “Kompyuternaya algebra v zadachakh vychislitelnoi teorii spetsialnykh funktsii”, Programmirovanie, 2003, no. 2, 26–34 | MR | Zbl
[32] Skorokhodov S. L., “Simvolnye preobrazovaniya v zadache analiticheskogo prodolzheniya gipergeometricheskoi funktsii ${}_pF_{p-1}(z)$ v okrestnost tochki $z=1$ v logarifmicheskom sluchae”, Programmirovanie, 2004, no. 3, 44–51 | MR