A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 574-586 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for evaluating the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)=\sum_{k=0}^\infty f_k$ in terms of the Riemann zeta function $\zeta(s)$ and the Hurwitz zeta function $\zeta(1/2,s)$. By analyzing an asymptotic expansion of the coefficients $f_k$ as $k\to\infty$, an expansion of ${}_pF_{p-1}$ is constructed in the form of combinations of $\zeta(s)$ and $\zeta(1/2,s)$ with explicit coefficients expressed in terms of generalized Bernoulli polynomials. The convergence of the expansion can be considerably accelerated by choosing optimal values of two control parameters. The efficiency of the method is demonstrated through a great deal of computations and comparisons with Mathematica and Maple.
@article{ZVMMF_2005_45_4_a1,
     author = {S. L. Skorokhodov},
     title = {A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {574--586},
     year = {2005},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a1/}
}
TY  - JOUR
AU  - S. L. Skorokhodov
TI  - A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 574
EP  - 586
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a1/
LA  - ru
ID  - ZVMMF_2005_45_4_a1
ER  - 
%0 Journal Article
%A S. L. Skorokhodov
%T A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 574-586
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a1/
%G ru
%F ZVMMF_2005_45_4_a1
S. L. Skorokhodov. A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 4, pp. 574-586. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_4_a1/

[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973

[2] Nörlund N. E., “Hypergeometric functions”, Acta Math., 94:3–4 (1955), 289–349 | DOI | MR

[3] Slater L. J., Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl

[4] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[5] Knut D., Iskusstvo programmirovaniya na EVM, v. 3, Sortirovka i poisk, Nauka, M., 1973

[6] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl

[7] Petkovsek M., Wilf H. S., Zeilberger D., $A=B$, A. K. Peters, Wellesley, Massachusetts, 1996 | MR | Zbl

[8] Exton H., Multiple hypergeometric functions and applications, New York, Chichester, 1976 | MR

[9] Suzuki A. T., Schmidt A. G. M., “Loop integrals in three outstanding gauges: Feynman, light-cone, and Coulomb”, J. Comput. Phys., 168:1 (2001), 207–218 | DOI | MR | Zbl

[10] Davydychev A. I., Kalmykov M. Yu., Massive Feynman diagrams and inverse binomial sums, DESY 02-214, Dresden, March 2003, 29 pp., arXiv: hep-th/0303162 | MR

[11] Marichev O. I., Metody vychisleniya integralov ot spetsialnykh funktsii, Nauka i tekhn., Minsk, 1978 | MR

[12] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl

[13] Crandall R. E., Topics in advanced scientific computation, Springer, New York, 1996 | MR

[14] Bühring W., Srivastava H. M., “Analytic continuation of the generalized hypergeometric series near unit argument with emphasis on the zero-balanced series”, Approximation Theory and Applic., Hadronic Press, Palm Harbor, Florida, 1998, 17–35 | MR

[15] Bühring W., “Partial sums of hypergeometric series of unit argument”, Proc. Amer. Math. Soc., 132 (2004), 407–415 | DOI | MR

[16] Henrici P., Applied and computational complex analysis, v. I, J. Willey Sons, New York, 1988 ; v. II, 1991 ; v. III, 1985 | MR | Zbl | Zbl

[17] Knopp K., “Über das Eulerische Summierungsverfahren”, Math. Z., 15:3 (1922), 226–253 ; 18:1/2 (1923), 125–156 | DOI | MR | Zbl | DOI | MR | Zbl

[18] Khardi G., Raskhodyaschiesya ryady, Izd-vo inostr. lit., M., 1951

[19] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[20] Sternin B., Schatalov V., Borel–Laplace transform and asymptotic theory: Introduction to resurgent analysis, CRC-Press, New York, 1995 | MR

[21] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR

[22] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | MR | Zbl

[23] Kerimov M. K., “O metodakh vychisleniya dzeta-funktsii Rimana i nekotorykh ee obobschenii”, Zh. vychisl. matem. i matem. fiz., 20:6 (1980), 1580–1597 | MR | Zbl

[24] Borwein J. M., Bradley D. M., Crandall R. E., “Computational strategies for the Riemann zeta function”, J. Comput. and Appl. Math., 121:1–2 (2000), 247–296 | DOI | MR | Zbl

[25] Odlyzko A. M., Schönhage A., “Fast algorithms for multiple evaluations of the Riemann zeta function”, Trans. Amer. Math. Soc., 309:2 (1988), 797–809 | DOI | MR | Zbl

[26] Skorokhodov S. L., “Advanced techniques for computing divergent series”, Nucl. Instrum. Methods in Phys. Res., 502 (2003), 636–638 | DOI

[27] Skorokhodov S. L., “Approksimatsii Pade i chislennyi analiz dzeta-funktsii Rimana”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1330–1352 | MR | Zbl

[28] Skorokhodov S. L., “Metody analiticheskogo prodolzheniya obobschennykh gipergeometricheskikh funktsii ${}_pF_{p-1}(a_1, \dots, a_p; b_1, \dots, b_{p-1}; z)$”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1164–1186 | MR | Zbl

[29] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[30] http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html

[31] Skorokhodov S. L., “Kompyuternaya algebra v zadachakh vychislitelnoi teorii spetsialnykh funktsii”, Programmirovanie, 2003, no. 2, 26–34 | MR | Zbl

[32] Skorokhodov S. L., “Simvolnye preobrazovaniya v zadache analiticheskogo prodolzheniya gipergeometricheskoi funktsii ${}_pF_{p-1}(z)$ v okrestnost tochki $z=1$ v logarifmicheskom sluchae”, Programmirovanie, 2004, no. 3, 44–51 | MR