Minimizing sequences in problems with d.c. constraints
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 435-447
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Nonconvex optimization problems with a single inequality constraint given by the difference of two convex functions (i.e., by a d.c. function) are considered. Such problems may have many local solutions and stationary points that are far (in terms of, say, the value of the objective function) from a global solution. Necessary and sufficient conditions are proved for minimizing sequences in these problems. A global search strategy is proposed that is based on these conditions and uses classical methods of optimization. Its global convergence is proved.
            
            
            
          
        
      @article{ZVMMF_2005_45_3_a8,
     author = {A. S. Strekalovskii},
     title = {Minimizing sequences in problems with d.c. constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {435--447},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a8/}
}
                      
                      
                    TY - JOUR AU - A. S. Strekalovskii TI - Minimizing sequences in problems with d.c. constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 435 EP - 447 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a8/ LA - ru ID - ZVMMF_2005_45_3_a8 ER -
A. S. Strekalovskii. Minimizing sequences in problems with d.c. constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 435-447. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a8/
