Minimizing sequences in problems with d.c. constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 435-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonconvex optimization problems with a single inequality constraint given by the difference of two convex functions (i.e., by a d.c. function) are considered. Such problems may have many local solutions and stationary points that are far (in terms of, say, the value of the objective function) from a global solution. Necessary and sufficient conditions are proved for minimizing sequences in these problems. A global search strategy is proposed that is based on these conditions and uses classical methods of optimization. Its global convergence is proved.
@article{ZVMMF_2005_45_3_a8,
     author = {A. S. Strekalovskii},
     title = {Minimizing sequences in problems with d.c. constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {435--447},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a8/}
}
TY  - JOUR
AU  - A. S. Strekalovskii
TI  - Minimizing sequences in problems with d.c. constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 435
EP  - 447
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a8/
LA  - ru
ID  - ZVMMF_2005_45_3_a8
ER  - 
%0 Journal Article
%A A. S. Strekalovskii
%T Minimizing sequences in problems with d.c. constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 435-447
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a8/
%G ru
%F ZVMMF_2005_45_3_a8
A. S. Strekalovskii. Minimizing sequences in problems with d.c. constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 435-447. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a8/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[2] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[3] Horst R., Tuy H., Global optimization: Deterministic approaches, 2nd revised ed., Springer, Berlin, 1993 | MR

[4] Horst R., Pardalos P. M., Thoai N. V., Introduction to global optimization, Kluwer Acad. Pubs., Dordrecht, 1995 | MR

[5] Strekalovskii A. S., “K probleme globalnogo ekstremuma”, Dokl. AN SSSR, 292:5 (1987), 1062–1066 | MR

[6] Strekalovskii A. S., “K probleme globalnogo ekstremuma v nevypuklykh zadachakh optimizatsii”, Izv. vuzov. Matematika, 1990, no. 8, 74–80 | MR

[7] Strekalovskii A. S., “Ob ekstremalnykh zadachakh na dopolneniyakh vypuklykh mnozhestv”, Kibernetika i sistemnyi analiz, 1993, no. 1, 113–126 | MR

[8] Strekalovsky A. S., Tsevendorj I., “Testing the $\mathscr{R}$-strategy for a reverse convex problem”, J. Global Optimizat., 13:1 (1998), 61–74 | DOI | MR | Zbl

[9] Strekalovskii A. S., “Ob ekstremalnykh zadachakh s d.c.-ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 41:12 (2001), 1833–1843 | MR | Zbl

[10] Strekalovskii A. S., “O minimizatsii raznosti dvukh vypuklykh funktsii na dopustimom mnozhestve”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 399–409 | MR | Zbl

[11] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl