Best uniform approximation of a convex compact set by a ball in an arbitrary norm
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 416-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The finite-dimensional problem of the best uniform approximation of a convex compact set by a ball with respect to an arbitrary norm in the Hausdorff metric corresponding to that norm is considered. When the compact set to be estimated and the norm ball are polyhedra, the problem is shown to reduce to a linear program. This fact is used to design an iterative method for solving the problem in the case of an arbitrary compact set and an arbitrary norm. At every step of the method, the unit ball in the norm used and the underlying compact set are replaced by their outer polyhedral approximations, where the polyhedra are constructed from supporting hyperplanes drawn through certain boundary points.
@article{ZVMMF_2005_45_3_a6,
     author = {S. I. Dudov and I. V. Zlatorunskaya},
     title = {Best uniform approximation of a convex compact set by a ball in an arbitrary norm},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {416--428},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a6/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - I. V. Zlatorunskaya
TI  - Best uniform approximation of a convex compact set by a ball in an arbitrary norm
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 416
EP  - 428
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a6/
LA  - ru
ID  - ZVMMF_2005_45_3_a6
ER  - 
%0 Journal Article
%A S. I. Dudov
%A I. V. Zlatorunskaya
%T Best uniform approximation of a convex compact set by a ball in an arbitrary norm
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 416-428
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a6/
%G ru
%F ZVMMF_2005_45_3_a6
S. I. Dudov; I. V. Zlatorunskaya. Best uniform approximation of a convex compact set by a ball in an arbitrary norm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 416-428. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a6/

[1] Nikolskii M. S., Silin D. B., “O nailuchshem priblizhenii vypuklogo kompakta elementami addiala”, Tr. MIRAN, 211, M., 1995, 338–354 | MR

[2] D'Ocagne M., “Sur certaine figures minimales”, Bull. Soc. Math. France, 12 (1884), 168–177 | MR

[3] Lebesgue H., “Sur quelques questions de minimum, relatives and courbes orbiformes, et sur leurs rapports avec le calcul des variations”, J. Math. Pures and Appl., 4 (1921), 67–96 | Zbl

[4] Bonnesen T., “Uber das isoperimetrische Defizit ebener Figuren”, Math. Ann., 91 (1924), 252–268 | DOI | MR | Zbl

[5] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, Fazis, M., 2002

[6] Vincze St., “Über den Minimalkreisring einer Eiline”, Acta Sci. Math. Acta Univ. Szeged, 11:3 (1947), 133–138 | MR | Zbl

[7] Vincze I., “Über Kreisringe, die eine Eiline einschlissen”, Studia Sci. Math. Hungarica, 9:1/2 (1974), 155–159 | MR

[8] Kritikos N., “Über konvexe Flachen und einschlissende Kugeln”, Math. Ann., 96 (1927), 583–586 | DOI | MR

[9] Barany I., “On the minimal ring containing the boundary of convex body”, Acta Sci. Math. Acta Univ. Szeged, 52:1/2 (1988), 93–100 | MR | Zbl

[10] Zucco A., “Minimal shell of a typical convex body”, Proc. Amer. Math. Soc., 109:3 (1990), 797–802 | DOI | MR | Zbl

[11] Dudov S. I., Zlatorunskaya I. V., “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191:10 (2000), 13–38 | MR | Zbl

[12] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[13] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1986 | MR

[14] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[15] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[16] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[17] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[18] Zukhovitskii S. I., Avdeeva L. I., Lineinoe i vypukloe programmirovanie, Nauka, M., 1964 | MR

[19] Dudov S. I., “Differentsiruemost po napravleniyam funktsii rasstoyaniya”, Matem. sb., 186:3 (1995), 29–52 | MR | Zbl