On sequences of points for the evaluation of improper integrals by quasi-Monte Carlo methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 411-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integral of any bounded integrable function in an $n$-dimensional unit cube can be evaluated using the quasi-Monte Carlo method. However, if the integrand is unbounded at the origin, the integration points must not be very close to the singularity. The rate of approach of quasi-random points to the origin is numerically evaluated.
@article{ZVMMF_2005_45_3_a5,
     author = {D. I. Asotskii and I. M. Sobol'},
     title = {On sequences of points for the evaluation of improper integrals by {quasi-Monte} {Carlo} methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {411--415},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a5/}
}
TY  - JOUR
AU  - D. I. Asotskii
AU  - I. M. Sobol'
TI  - On sequences of points for the evaluation of improper integrals by quasi-Monte Carlo methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 411
EP  - 415
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a5/
LA  - ru
ID  - ZVMMF_2005_45_3_a5
ER  - 
%0 Journal Article
%A D. I. Asotskii
%A I. M. Sobol'
%T On sequences of points for the evaluation of improper integrals by quasi-Monte Carlo methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 411-415
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a5/
%G ru
%F ZVMMF_2005_45_3_a5
D. I. Asotskii; I. M. Sobol'. On sequences of points for the evaluation of improper integrals by quasi-Monte Carlo methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 411-415. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a5/

[1] Sobol I. M., “Vychislenie nesobstvennykh integralov pri pomoschi ravnomerno raspredelennykh posledovatelnostei”, Dokl. AN SSSR, 210:2 (1973), 278–281 | MR | Zbl

[2] Klinger B., “Numerical integration of singular integrands using low discrepancy sequences”, Computing, 9 (1997), 127–138 | MR

[3] de Doncker E., Guan Y., “Error bounds for the integration of singular functions using equidistributed sequences”, J. Complexity, 19:3 (2003), 259–271 | DOI | MR | Zbl

[4] Hartinger J., Kainhofer R. F., Tichy R. F., Quasi-Monte Carlo algorithms for unbounded, weighted integration problems, Techn. Rept., Graz Techn. Univ., 2003

[5] Owen A. B., Halton sequences avoid the origin, Techn. Rept., Stanford Univ., 2003 | Zbl

[6] Jaeckel P., Monte Carlo methods in finance, J. Wiley, London, 2002

[7] Halton J., “On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals”, Numer. Math., 2:2 (1960), 84–90 | DOI | MR | Zbl

[8] Fame H., “Discrepance de suites associees a une systeme de numeration (en dimension $s$)”, Acta arithm., 41 (1982), 337–351 | MR

[9] Sobol I. M., Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969 | MR

[10] Sobol' I. M., Turchaninov V. I., Levitan Yu. L., Shukhman B. V., Quasirandom sequence generators, Keldysh Inst. Appl. Math., M., 1992 | MR

[11] Drmota M., Tichy R. F., “Sequences, discrepancies and applications”, Lect. Notes in Math., 1651, Springer, Berlin, 1997 | MR | Zbl