First-order perturbation theory for the symmetric lanczos algorithm
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 391-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sensitivity with respect to infinitesimal perturbations of a matrix is analyzed for orthonormal bases in Krylov subspaces constructed by using the symmetric Lanczos iteration. Exact expressions for the corresponding condition numbers are derived, which makes it possible to efficiently calculate these numbers.
@article{ZVMMF_2005_45_3_a3,
     author = {A. N. Malyshev and M. Sadkane},
     title = {First-order perturbation theory for the symmetric lanczos algorithm},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {391--399},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a3/}
}
TY  - JOUR
AU  - A. N. Malyshev
AU  - M. Sadkane
TI  - First-order perturbation theory for the symmetric lanczos algorithm
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 391
EP  - 399
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a3/
LA  - ru
ID  - ZVMMF_2005_45_3_a3
ER  - 
%0 Journal Article
%A A. N. Malyshev
%A M. Sadkane
%T First-order perturbation theory for the symmetric lanczos algorithm
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 391-399
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a3/
%G ru
%F ZVMMF_2005_45_3_a3
A. N. Malyshev; M. Sadkane. First-order perturbation theory for the symmetric lanczos algorithm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 391-399. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a3/

[1] Cullum J. K., Willoughby R. A., Lanczos algorithms for large symmetric eigenvalue computations, v. I, Theory, SIAM, Philadelphia, 2002 | MR

[2] Golub G. H., Van Loan C. F., Matrix computations, 2nd ed., Johns Hopkins Press, Baltimore, MD, 1989 | MR | Zbl

[3] Parleit B. N., The symmetric eigenvalue problem, SIAM, Philadelphia, 1998 | MR

[4] Godunov S. K., Prokopov G. P., “Primenenie metoda minimalnykh iteratsii dlya vychisleniya sobstvennykh znachenii ellipticheskikh operatorov”, Zh. vychisl. matem. i matem. fiz., 10:5 (1970), 1180–1190 | MR | Zbl

[5] Greenbaum A., Strakos Z., “Predicting the behavior of finite precision Lanczos and conjugate gradient computations”, SIAM J. Matrix Analys. and Appl., 13 (1992), 121–137 | DOI | MR | Zbl

[6] Carpraux J.-F., Godunov S. K., Kuznetsov S. V., “Condition number of the Krylov bases and subspaces”, Linear Algebra Appl., 248:1–3 (1996), 136–160 | MR

[7] Kuznetsov S. V., “Perturbation bounds of the Krylov bases and associated Hessenberg forms”, Linear Algebra Appl., 265:1–3 (1997), 1–28 | DOI | MR | Zbl