@article{ZVMMF_2005_45_3_a3,
author = {A. N. Malyshev and M. Sadkane},
title = {First-order perturbation theory for the symmetric lanczos algorithm},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {391--399},
year = {2005},
volume = {45},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a3/}
}
TY - JOUR AU - A. N. Malyshev AU - M. Sadkane TI - First-order perturbation theory for the symmetric lanczos algorithm JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 391 EP - 399 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a3/ LA - ru ID - ZVMMF_2005_45_3_a3 ER -
A. N. Malyshev; M. Sadkane. First-order perturbation theory for the symmetric lanczos algorithm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 391-399. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a3/
[1] Cullum J. K., Willoughby R. A., Lanczos algorithms for large symmetric eigenvalue computations, v. I, Theory, SIAM, Philadelphia, 2002 | MR
[2] Golub G. H., Van Loan C. F., Matrix computations, 2nd ed., Johns Hopkins Press, Baltimore, MD, 1989 | MR | Zbl
[3] Parleit B. N., The symmetric eigenvalue problem, SIAM, Philadelphia, 1998 | MR
[4] Godunov S. K., Prokopov G. P., “Primenenie metoda minimalnykh iteratsii dlya vychisleniya sobstvennykh znachenii ellipticheskikh operatorov”, Zh. vychisl. matem. i matem. fiz., 10:5 (1970), 1180–1190 | MR | Zbl
[5] Greenbaum A., Strakos Z., “Predicting the behavior of finite precision Lanczos and conjugate gradient computations”, SIAM J. Matrix Analys. and Appl., 13 (1992), 121–137 | DOI | MR | Zbl
[6] Carpraux J.-F., Godunov S. K., Kuznetsov S. V., “Condition number of the Krylov bases and subspaces”, Linear Algebra Appl., 248:1–3 (1996), 136–160 | MR
[7] Kuznetsov S. V., “Perturbation bounds of the Krylov bases and associated Hessenberg forms”, Linear Algebra Appl., 265:1–3 (1997), 1–28 | DOI | MR | Zbl