Triple-deck analysis of formation and evolution of supersonic zones and local separation zones in unsteady transonic flow over a surface roughness element
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 536-544 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Transonic gas flow over a small roughness element located on the surface of a plate is analyzed within the framework of the unsteady triple-deck theory, in which the potential flow in the outer region is described by the Lin–Reissner–Tsien equation. Special attention is given to the formation and evolution of supersonic zones and closing shock waves in the outer potential region and local separation zones in the lower viscous sublayer. It is found that two supersonic flow regions develop in the outer inviscid region. They are closed by shock waves and are connected to each other. The shock waves are inclined toward the incoming stream. Numerical computations agree well with the experimental data.
@article{ZVMMF_2005_45_3_a16,
     author = {V. N. Diesperov and G. L. Korolev},
     title = {Triple-deck analysis of formation and evolution of supersonic zones and local separation zones in unsteady transonic flow over a~surface roughness element},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {536--544},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a16/}
}
TY  - JOUR
AU  - V. N. Diesperov
AU  - G. L. Korolev
TI  - Triple-deck analysis of formation and evolution of supersonic zones and local separation zones in unsteady transonic flow over a surface roughness element
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 536
EP  - 544
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a16/
LA  - ru
ID  - ZVMMF_2005_45_3_a16
ER  - 
%0 Journal Article
%A V. N. Diesperov
%A G. L. Korolev
%T Triple-deck analysis of formation and evolution of supersonic zones and local separation zones in unsteady transonic flow over a surface roughness element
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 536-544
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a16/
%G ru
%F ZVMMF_2005_45_3_a16
V. N. Diesperov; G. L. Korolev. Triple-deck analysis of formation and evolution of supersonic zones and local separation zones in unsteady transonic flow over a surface roughness element. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 536-544. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a16/

[1] Bollkhauz U. F., “Nekotorye noveishie dostizheniya v chislennom modelirovanii transzvukovykh techenii”, Chisl. metody v dinamike zhidkosti, Mir, M., 1981, 152–242

[2] Tijdeman H., Seebass R., “Transonic flow past oscillating airfoils”, Ann. Rev. Fluid Mech., 12:5 (1980), 181–222 | DOI | Zbl

[3] Liepmann H. F., “The interaction between boundary layer and shock waves in transonic flow”, J. Aeronaut. Sci., 13:12 (1946), 623–638

[4] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1969, no. 4, 53–57 | Zbl

[5] Stewartson K., Williams P. G., “Self-induced separation”, Proc. Roy. Soc. London. Ser. A, 312:1509 (1969), 181–206 | DOI | Zbl

[6] Bogolepov V. V., Neiland V. Ya., Issledovanie lokalnykh vozmuschenii vyazkikh sverkhzvukovykh techenii, ed. V. V. Struminskii, Nauka, M., 1976

[7] Bogolepov V. V., “Raschet vzaimodeistviya sverkhzvukovogo pogranichnogo sloya s tonkim prepyatstviem”, Uch. zap. TsAGI, 5:6 (1974), 30–38

[8] Melnic R. E., Messiter A. F., Feo A., “Shock-wave strength for separation of a laminar boundary layer at transonic speeds”, AIAA Journal, 9:6 (1971), 1197–1198 | DOI

[9] Bodonyi R. J.. Kluwick A., “Supercritical transonic trailing-edge flow”, Quart. J. Mech. and Appl. Math., 35:2 (1982), 265–277 | DOI | MR | Zbl

[10] Korolev G. L., “K asimptoticheskoi teorii vyazkogo transzvukovogo techeniya vblizi ugla malogo izloma”, Uch. zap. TsAGI, 14:4 (1983), 105–109 | MR

[11] Korolev G. L., “Techenie v okrestnosti zadnei kromki plastiny, obtekaemoi transzvukovym potokom vyazkogo gaza”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1983, no. 3, 23–28 | Zbl

[12] Bodonyi R. J., Kluwick A., “Transonic trailing-edge flow”, Quart. J. Mech. and Appl. Math., 51 (1998), 297–310 | DOI | MR | Zbl

[13] Bogdanov A. N., Diesperov V. H., Zhuk V. I. i dr., “Asimptoticheskie modeli vyazkikh transzvukovykh techenii”, Ann. dokl. Vseros. s'ezda po teor. i prikl. mekhan. (23–29 avgusta 2003 g.), Perm, 2003, 106–107

[14] Diesperov V. N., Korolev G. L., “Vozniknovenie sverkhzvukovykh zon i zon lokalnogo otryva pri transzvukovom statsionarnom obtekanii nerovnosti poverkhnosti v rezhime svobodnogo vzaimodeistviya”, Izv. RAN. Mekhan. zhidkosti i gaza, 2003, no. 1, 50–59 | Zbl

[15] Ryzhov O. S., “O nestatsionarnom pogranichnom sloe s samoindutsirovannym davleniem pri okolozvukovykh skorostyakh vneshnego potoka”, Dokl. AN SSSR, 236:5 (1977), 1091–1094 | MR | Zbl

[16] Lin C. C., Reissner E., Tsien H. S., “On two-dimensional nonsteady motion of a slender body in a compressible fluid”, J. Math. and Phys., 27:3 (1948), 220–231 | MR | Zbl

[17] Diesperov V. H., Popov S. P., “Struktura techeniya pri nestatsionarnom transzvukovom obtekanii ploskoi plastiny s poperechnym schelevym vduvom”, Zh. vychisl. matem. i matem. fiz., 42:11 (2002), 1744–1755 | MR | Zbl

[18] Korolev G. L., “Ob odnom metode resheniya zadach asimptoticheskoi teorii vzaimodeistviya pogranichnogo sloya s vneshnim potokom”, Zh. vychisl. matem. i matem. fiz., 27:8 (1987), 1224–1232

[19] Lipman G. V., Roshko A., Elementy gazovoi dinamiki, Izd-vo inostr. lit., M., 1960 | MR

[20] Koul Dzh., Kuk L. R., Transzvukovaya aerodinamika, Mir, M., 1989

[21] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[22] Ryzhov O. S., Savenkov I. V., “Ob ustoichivosti pogranichnogo sloya pri transzvukovykh skorostyakh vneshnego potoka”, Prikl. matem. i tekhn. fiz., 1990, no. 2, 65–71