Numerical study of some solutions to the relativistic equation of scalar particles in the gravitational field of a massive point
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 526-535 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A pioneering numerical analysis of some solutions to the relativistic equation for scalar particles in the gravitational field of a massive point source is given. The ground and other states and the corresponding eigenvalues of the discrete spectrum for various values of the momentum of scalar particles are examined. A new feature of the solutions is that their physical characteristics depend on the gravitational mass defect of the point source of the gravitational field. The resulting Sturm–Liouville problem is numerically examined using an algorithm based on a continuous variant of Newton's method. At every iteration step, the corresponding linear boundary value problems are solved by the spline collocation method.
@article{ZVMMF_2005_45_3_a15,
     author = {T. L. Boyadzhiev and D. Georgieva and P. P. Fiziev},
     title = {Numerical study of some solutions to the relativistic equation of scalar particles in the gravitational field of a~massive point},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {526--535},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a15/}
}
TY  - JOUR
AU  - T. L. Boyadzhiev
AU  - D. Georgieva
AU  - P. P. Fiziev
TI  - Numerical study of some solutions to the relativistic equation of scalar particles in the gravitational field of a massive point
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 526
EP  - 535
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a15/
LA  - ru
ID  - ZVMMF_2005_45_3_a15
ER  - 
%0 Journal Article
%A T. L. Boyadzhiev
%A D. Georgieva
%A P. P. Fiziev
%T Numerical study of some solutions to the relativistic equation of scalar particles in the gravitational field of a massive point
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 526-535
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a15/
%G ru
%F ZVMMF_2005_45_3_a15
T. L. Boyadzhiev; D. Georgieva; P. P. Fiziev. Numerical study of some solutions to the relativistic equation of scalar particles in the gravitational field of a massive point. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 526-535. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a15/

[1] Fiziev P., Gravitational field of massive point particle in general relativity, arXiv: gr-qc/0306088

[2] Feshbach H., Villars F., “Elementary relativistic wave mechanics of spin $0$ and spin $1/2$ particles”, Rev. Mod. Phys., 30:24 (1958) | MR | Zbl

[3] Jacobson T., “Introduction to quantum fields in curved spacetime and Hawking effect”, arXiv: gr-qc/0308048 | MR

[4] Dirac P. A. M., “Particles of finite size in gravitational field”, Proc. Roy Soc. (London), A, 270 (1962), 354 ; Conference in Warszawa and Jablonna, Gauthier-Villars, Paris, 1964, 163–175 | DOI | MR

[5] Zhidkov E. P., Makarenko G. I., Puzynin I. V., “Nepreryvnyi analog metoda Nyutona dlya nelineinykh zadach fiziki”, Probl. fiz. elementarnykh chastits at. yadra, 4, no. 1, OIYaI, Dubna, 1973, 127 | MR

[6] Puzynin I. V., Amirkhanov I. V. i dr., “Obobschennyi nepreryvnyi analog metoda Nyutona dlya chislennogo issledovaniya nekotorykh nelineinykh kvantovo-polevykh modelei”, Probl. fiz. elementarnykh chastits at. yadra, 30, no. 1, OIYaI, Dubna, 1999, 210–265

[7] Ponomarev L. I., Puzynin I. V., Puzynina T. P., Vychislenie urovnei energii mezomolekul s pomoschyu nepreryvnogo analoga metoda Nyutona, Soobsch. OIYaI, R4-6256, Dubna, 1972

[8] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[9] Boyadzhiev T. L., Splain-kollokatsionnaya skhema povyshennogo poryadka tochnosti, Soobsch. OIYaI R2-2002-101, Dubna, 2002

[10] Ermakov V. V., Kalitkin H. H., “Optimalnyi shag i regulyarizatsiya metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 491–497 | MR | Zbl

[11] Joshi P. S., Global aspects in gravitation and cosmology, Clarendon Press, Oxford, 1993 | MR

[12] Singh T. P., Joshi P. S., “The final fate of spherical inhomogeneous dust collapse”, Class. Quant. Grav., 13 (1996), 559 | DOI | MR | Zbl

[13] Hamade R. S., Stewart J. M., “The spherically symmetric collapse of a massless scalar field”, Class. Quant. Grav., 13 (1996), 497 | DOI | MR | Zbl

[14] Giambo R., Giannoni F., Magli G., Piccone P., “New mathematical framework for spherical gravitational collapse”, Class. Quant. Grav., 20:L75 (2003) ; New solutions of Einstein equations in spherical symmetry: The cosmic censor to the court, arXiv: gr-qc/0204030 | MR