Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 495-508 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results of solving the first boundary value problem for a polyharmonic equation are presented. The technique is based on the probabilistic representation of the solution of this problem constructed by the authors. Such a solution is shown to be a parametric derivative of the solution of a special Dirichlet problem for the Helmholtz equation. Based on this fact, new “walk-by-spheres” algorithms for a polyharmonic equation are developed. This made it possible to construct an algorithm implementing the Monte Carlo method for estimating the covariance function of the solution of a biharmonic equation with random functional parameters.
@article{ZVMMF_2005_45_3_a13,
     author = {V. L. Lukinov and G. A. Mikhailov},
     title = {Monte {Carlo} methods for solving the first boundary value problem for a~polyharmonic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {495--508},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/}
}
TY  - JOUR
AU  - V. L. Lukinov
AU  - G. A. Mikhailov
TI  - Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 495
EP  - 508
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/
LA  - ru
ID  - ZVMMF_2005_45_3_a13
ER  - 
%0 Journal Article
%A V. L. Lukinov
%A G. A. Mikhailov
%T Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 495-508
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/
%G ru
%F ZVMMF_2005_45_3_a13
V. L. Lukinov; G. A. Mikhailov. Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 495-508. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/

[1] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975 | MR

[2] Mikhailov G. A., Lukinov V. L., “Veroyatnostnoe predstavlenie i metody Monte-Karlo dlya resheniya uravnenii so stepenyami ellipticheskikh operatorov”, Dokl. RAN, 390:6 (2003), 1–3 | MR

[3] Lavrentev M. M., Savelev L. Ya., Lineinye operatory i nekorrektnye zadachi, Nauka, M., 1991 | MR

[4] Ermakov S. M., Nekrutkin V. V., Sipin A. S., Sluchainye protsessy dlya resheniya klassicheskikh uravnenii matematicheskoi fiziki, Nauka, M., 1984 | MR

[5] Muller M. E., “Some continuous Monte Carlo methods for the Dirichlet problem”, Ann. Math. Statist., 27:3 (1956), 569–589 | DOI | MR | Zbl

[6] Elepov B. S., Mikhailov G. A., “O reshenii zadachi Dirikhle dlya uravneniya $\Delta u-cu=-g$ modelirovaniem “bluzhdanii po sferam””, Zh. vychisl. matem. i matem. fiz., 9:3 (1969), 647–654 | MR | Zbl

[7] Motoo M., “Some evolutions for continuous Monte Carlo method by using Brownian hitting process”, Ann. Math. Statist., 11 (1959), 49–54 | DOI | MR | Zbl

[8] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[9] Mikhailov G. A., Vesovye algoritmy statisticheskogo modelirovaniya, Nauka, Novosibirsk, 2003

[10] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Izd. 2-e pererab. i dop., Nauka, M., 1963 | MR

[11] Mikhailov G. A., Makarov R. N., “Parametricheskoe differentsirovanie i otsenki sobstvennykh chisel metodom Monte-Karlo”, Sibirskii matem. zhurnal, 39:4 (1998), 931–941 | MR

[12] Sabelfeld K. K., Metody Monte-Karlo v kraevykh zadachakh, Nauka, M., 1989 | MR

[13] Bolotin V. V., Sluchainye kolebaniya uprugikh sistem, Nauka, M., 1979 | MR | Zbl

[14] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1976 | MR