Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 495-508
Voir la notice de l'article provenant de la source Math-Net.Ru
Results of solving the first boundary value problem for a polyharmonic equation are presented. The technique is based on the probabilistic representation of the solution of this problem constructed by the authors. Such a solution is shown to be a parametric derivative of the solution of a special Dirichlet problem for the Helmholtz equation. Based on this fact, new “walk-by-spheres” algorithms for a polyharmonic equation are developed. This made it possible to construct an algorithm implementing the Monte Carlo method for estimating the covariance function of the solution of a biharmonic equation with random functional parameters.
@article{ZVMMF_2005_45_3_a13,
author = {V. L. Lukinov and G. A. Mikhailov},
title = {Monte {Carlo} methods for solving the first boundary value problem for a~polyharmonic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {495--508},
publisher = {mathdoc},
volume = {45},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/}
}
TY - JOUR AU - V. L. Lukinov AU - G. A. Mikhailov TI - Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 495 EP - 508 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/ LA - ru ID - ZVMMF_2005_45_3_a13 ER -
%0 Journal Article %A V. L. Lukinov %A G. A. Mikhailov %T Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 495-508 %V 45 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/ %G ru %F ZVMMF_2005_45_3_a13
V. L. Lukinov; G. A. Mikhailov. Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 495-508. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/