@article{ZVMMF_2005_45_3_a13,
author = {V. L. Lukinov and G. A. Mikhailov},
title = {Monte {Carlo} methods for solving the first boundary value problem for a~polyharmonic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {495--508},
year = {2005},
volume = {45},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/}
}
TY - JOUR AU - V. L. Lukinov AU - G. A. Mikhailov TI - Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 495 EP - 508 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/ LA - ru ID - ZVMMF_2005_45_3_a13 ER -
%0 Journal Article %A V. L. Lukinov %A G. A. Mikhailov %T Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 495-508 %V 45 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/ %G ru %F ZVMMF_2005_45_3_a13
V. L. Lukinov; G. A. Mikhailov. Monte Carlo methods for solving the first boundary value problem for a polyharmonic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 495-508. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a13/
[1] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975 | MR
[2] Mikhailov G. A., Lukinov V. L., “Veroyatnostnoe predstavlenie i metody Monte-Karlo dlya resheniya uravnenii so stepenyami ellipticheskikh operatorov”, Dokl. RAN, 390:6 (2003), 1–3 | MR
[3] Lavrentev M. M., Savelev L. Ya., Lineinye operatory i nekorrektnye zadachi, Nauka, M., 1991 | MR
[4] Ermakov S. M., Nekrutkin V. V., Sipin A. S., Sluchainye protsessy dlya resheniya klassicheskikh uravnenii matematicheskoi fiziki, Nauka, M., 1984 | MR
[5] Muller M. E., “Some continuous Monte Carlo methods for the Dirichlet problem”, Ann. Math. Statist., 27:3 (1956), 569–589 | DOI | MR | Zbl
[6] Elepov B. S., Mikhailov G. A., “O reshenii zadachi Dirikhle dlya uravneniya $\Delta u-cu=-g$ modelirovaniem “bluzhdanii po sferam””, Zh. vychisl. matem. i matem. fiz., 9:3 (1969), 647–654 | MR | Zbl
[7] Motoo M., “Some evolutions for continuous Monte Carlo method by using Brownian hitting process”, Ann. Math. Statist., 11 (1959), 49–54 | DOI | MR | Zbl
[8] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR
[9] Mikhailov G. A., Vesovye algoritmy statisticheskogo modelirovaniya, Nauka, Novosibirsk, 2003
[10] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Izd. 2-e pererab. i dop., Nauka, M., 1963 | MR
[11] Mikhailov G. A., Makarov R. N., “Parametricheskoe differentsirovanie i otsenki sobstvennykh chisel metodom Monte-Karlo”, Sibirskii matem. zhurnal, 39:4 (1998), 931–941 | MR
[12] Sabelfeld K. K., Metody Monte-Karlo v kraevykh zadachakh, Nauka, M., 1989 | MR
[13] Bolotin V. V., Sluchainye kolebaniya uprugikh sistem, Nauka, M., 1979 | MR | Zbl
[14] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1976 | MR