Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 484-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Earlier, some existence and invertibility theorems were proved for the problem of construction of multidimensional quasi-isometric mappings as minimizers of a polyconvex functional. In this paper, the proof of the same theorems is given that uses only natural assumptions on the shape of the domains and does not rely on additional a priori considerations. The general scheme of the proof also covers the situations in which the mapping of the entire or part of the domain boundary is found by minimizing the functional. The proof is based on the techniques used in the theory of the existence of minima in polyconvex problems.
@article{ZVMMF_2005_45_3_a12,
     author = {V. A. Garanzha},
     title = {Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {484--494},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a12/}
}
TY  - JOUR
AU  - V. A. Garanzha
TI  - Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 484
EP  - 494
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a12/
LA  - ru
ID  - ZVMMF_2005_45_3_a12
ER  - 
%0 Journal Article
%A V. A. Garanzha
%T Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 484-494
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a12/
%G ru
%F ZVMMF_2005_45_3_a12
V. A. Garanzha. Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 484-494. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a12/

[1] Garanzha V. A., Zamarashkin H. L., “Prostranstvennye kvaziizometrichnye otobrazheniya kak resheniya zadachi minimizatsii polivypuklogo funktsionala”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 854–865 | MR | Zbl

[2] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. and Analys., 63 (1977), 337–403 | DOI | MR | Zbl

[3] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl

[4] Morrey C. B., Multiple integrals in the calculus of variations, Springer, Berlin, 1966 | MR | Zbl

[5] Necas J., Les methodes directes en theorie des equations elliptique, Masson, Paris, 1967 | MR

[6] Yosida K., Functional Analysis, Springer, Berlin, 1966

[7] Reshetnyak Yu. G., “Teoremy ustoichivosti dlya otobrazhenii s ogranichennym iskazheniem”, Sibirskii matem. zhurnal, 9:3 (1968), 667–684 | Zbl

[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh differentsialnykh uravnenii, Gostekhizdat, M., 1956 | MR

[9] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[10] Dacorogna B., Direct methods in the calculus of variations, Springer, New Jork, 1989 | MR

[11] De-Giorgi E., Teoremi di semiconntinuita nel calcolo delle variazioni, Inst. Naz. Di Alta Matem., Roma, 1968

[12] Ekeland I., Temam R., Analyse convexe et probleme variotionnels, Dunod, Paris; Gauthier-Villars, 1974 | MR | Zbl

[13] Rockafellar R. T., Convex analysis, Princeton Univ. Press, Princeton, 1970 | MR

[14] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992

[15] Ball J. M., “Global invertibility of Sobolev functions and the interpenetration of matter”, Proc. Roy. Soc. Edinburgh, A, 88 (1981), 315–328 | MR | Zbl

[16] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Fizmatlit, M., 1989