@article{ZVMMF_2005_45_3_a12,
author = {V. A. Garanzha},
title = {Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {484--494},
year = {2005},
volume = {45},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a12/}
}
TY - JOUR AU - V. A. Garanzha TI - Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 484 EP - 494 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a12/ LA - ru ID - ZVMMF_2005_45_3_a12 ER -
%0 Journal Article %A V. A. Garanzha %T Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 484-494 %V 45 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a12/ %G ru %F ZVMMF_2005_45_3_a12
V. A. Garanzha. Existence and invertibility theorems for the problem of the variational construction of quasi-isometric mappings with free boundaries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 484-494. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a12/
[1] Garanzha V. A., Zamarashkin H. L., “Prostranstvennye kvaziizometrichnye otobrazheniya kak resheniya zadachi minimizatsii polivypuklogo funktsionala”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 854–865 | MR | Zbl
[2] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. and Analys., 63 (1977), 337–403 | DOI | MR | Zbl
[3] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl
[4] Morrey C. B., Multiple integrals in the calculus of variations, Springer, Berlin, 1966 | MR | Zbl
[5] Necas J., Les methodes directes en theorie des equations elliptique, Masson, Paris, 1967 | MR
[6] Yosida K., Functional Analysis, Springer, Berlin, 1966
[7] Reshetnyak Yu. G., “Teoremy ustoichivosti dlya otobrazhenii s ogranichennym iskazheniem”, Sibirskii matem. zhurnal, 9:3 (1968), 667–684 | Zbl
[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh differentsialnykh uravnenii, Gostekhizdat, M., 1956 | MR
[9] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[10] Dacorogna B., Direct methods in the calculus of variations, Springer, New Jork, 1989 | MR
[11] De-Giorgi E., Teoremi di semiconntinuita nel calcolo delle variazioni, Inst. Naz. Di Alta Matem., Roma, 1968
[12] Ekeland I., Temam R., Analyse convexe et probleme variotionnels, Dunod, Paris; Gauthier-Villars, 1974 | MR | Zbl
[13] Rockafellar R. T., Convex analysis, Princeton Univ. Press, Princeton, 1970 | MR
[14] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992
[15] Ball J. M., “Global invertibility of Sobolev functions and the interpenetration of matter”, Proc. Roy. Soc. Edinburgh, A, 88 (1981), 315–328 | MR | Zbl
[16] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Fizmatlit, M., 1989