Steplike contrast structures for a second-order singularly perturbed quasilinear differential equation in the critical case
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 472-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a second-order singularly perturbed differential equation that is linear with respect to the derivative, a solution is considered that has an interior steplike transition layer in the critical case. An asymptotic expansion of the solution with respect to a small parameter is constructed and substantiated. An equation for the transition point is derived.
@article{ZVMMF_2005_45_3_a11,
     author = {O. E. Omel'chenko},
     title = {Steplike contrast structures for a second-order singularly perturbed quasilinear differential equation in the critical case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {472--483},
     year = {2005},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a11/}
}
TY  - JOUR
AU  - O. E. Omel'chenko
TI  - Steplike contrast structures for a second-order singularly perturbed quasilinear differential equation in the critical case
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 472
EP  - 483
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a11/
LA  - ru
ID  - ZVMMF_2005_45_3_a11
ER  - 
%0 Journal Article
%A O. E. Omel'chenko
%T Steplike contrast structures for a second-order singularly perturbed quasilinear differential equation in the critical case
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 472-483
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a11/
%G ru
%F ZVMMF_2005_45_3_a11
O. E. Omel'chenko. Steplike contrast structures for a second-order singularly perturbed quasilinear differential equation in the critical case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 3, pp. 472-483. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_3_a11/

[1] Vasileva A. B., “Kontrastnye struktury tipa stupenki dlya singulyarno vozmuschennogo kvazilineinogo differentsialnogo uravneniya vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 35:4 (1995), 520–531 | MR

[2] Butuzov V. F., Vasileva A. B., Nefedov H. H., “Asimptoticheskaya teoriya kontrastnykh struktur”, obzor, Avtomatika i telemekhan., 1997, no. 7, 4–32 | MR | Zbl

[3] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[4] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[5] Butuzov V. F., Vasileva A. B., “Ob asimptotike resheniya tipa kontrastnoi struktury”, Matem. zametki, 42:6 (1987), 831–841 | MR | Zbl

[6] Nefedov H. H., “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. ur-niya, 31:4 (1995), 719–722 | MR | Zbl

[7] Chang K., Khaues F., Nelineinye singulyarno vozmuschennye kraevye zadachi. Teoriya i prilozheniya, Mir, M., 1988 | MR

[8] Vasileva A. B., Omelchenko O. E., “Periodicheskie kontrastnye struktury tipa stupenki dlya singulyarno vozmuschennogo parabolicheskogo uravneniya”, Differents. ur-niya, 36:2 (2000), 198–208 | MR

[9] Nefedov H. H., Omelchenko O. E., “Pogransloinye resheniya v kvazilineinykh integrodifferentsialnykh uravneniyakh vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 491–503 | MR | Zbl