On families of hyperplanes that separate polyhedra
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 238-253
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of constructing a family of hyperplanes that separate two disjoint nonempty polyhedra is examined. the polyhedra are given by systems of linear inequalities or by systems of linear equalities with nonnegative variables. constructive algorithms for solving this problem are presented. the construction of separating hyperplanes relies heavily on theorems of the alternative.
@article{ZVMMF_2005_45_2_a6,
author = {A. I. Golikov and Yu. G. Evtushenko and S. Ketabchi},
title = {On families of hyperplanes that separate polyhedra},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {238--253},
year = {2005},
volume = {45},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a6/}
}
TY - JOUR AU - A. I. Golikov AU - Yu. G. Evtushenko AU - S. Ketabchi TI - On families of hyperplanes that separate polyhedra JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 238 EP - 253 VL - 45 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a6/ LA - ru ID - ZVMMF_2005_45_2_a6 ER -
A. I. Golikov; Yu. G. Evtushenko; S. Ketabchi. On families of hyperplanes that separate polyhedra. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 238-253. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a6/
[1] Eremin I. I., Teoriya lineinoi optimizatsii, UrO RAN, Ekaterinburg, 1998
[2] Golikov A. I., Evtushenko Yu. G., “Teoremy ob alternativakh i ikh primenenie v chislennykh metodakh”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 354–375 | MR | Zbl
[3] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial, M., 2003 | MR
[4] Mangasarian O. L., “A finite Newton method for classification”, Optimizat. Meth. and Software, 17 (2002), 913–930 | DOI | MR
[5] Mangasarian O. L., “A Newton method for linear programming”, J. Optimizat. Theory and Appl., 121 (2004), 1–18 | DOI | MR | Zbl
[6] Kanzow C., Qi H., Qi L., “On the minimum norm solution of linear programs”, J. Optimizat. Theory and Appl., 116 (2003), 333–345 | DOI | MR | Zbl