Dynamical discrepancy method in the input reconstruction problem with incomplete information
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 224-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem of the dynamic reconstruction of a variable input (control) of a nonlinear system by results of inaccurate measurement of a part of the phase vector is considered. An algorithm for solving this problem based on the method of auxiliary controlled models and the dynamical discrepancy method is suggested. The algorithm is stable with respect to informational noises and computational errors.
@article{ZVMMF_2005_45_2_a4,
     author = {A. S. Mart'yanov},
     title = {Dynamical discrepancy method in the input reconstruction problem with incomplete information},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {224--232},
     year = {2005},
     volume = {45},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a4/}
}
TY  - JOUR
AU  - A. S. Mart'yanov
TI  - Dynamical discrepancy method in the input reconstruction problem with incomplete information
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 224
EP  - 232
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a4/
LA  - ru
ID  - ZVMMF_2005_45_2_a4
ER  - 
%0 Journal Article
%A A. S. Mart'yanov
%T Dynamical discrepancy method in the input reconstruction problem with incomplete information
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 224-232
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a4/
%G ru
%F ZVMMF_2005_45_2_a4
A. S. Mart'yanov. Dynamical discrepancy method in the input reconstruction problem with incomplete information. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 224-232. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a4/

[1] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl

[2] Gusev M. I., Kurzhanskii A. B., “Obratnye zadachi dinamiki upravlyaemykh sistem”, Mekhan. i nauchno-tekhn. progress. Obschaya i prikl. mekhan., v. 1, Nauka, M., 1987, 187–195 | MR

[3] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988 | MR

[4] Ovseevin A. I., Truschenkov V. L., Chernousko F. L., “Upravleniya nepreryvnogo garantirovannogo otsenivaniya sostoyaniya dinamicheskikh sistem”, Izv. AN SSSR. Tekhn. kibernetika, 1984, no. 4, 94–101

[5] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 29–41 | MR

[6] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, London, 1995 | MR | Zbl

[7] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Nauka, M., 1999

[8] Osipov Yu. S., Kryazhimskii A. B., Maksimov V. I., Zadachi dinamicheskoi regulyarizatsii dlya sistem s raspredelennymi parametrami, IMM UrO RAN, Sverdlovsk, 1991

[9] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, IMM UrO RAN, Ekaterinburg, 2000

[10] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., “Obratnye zadachi dinamiki dlya parabolicheskikh sistem”, Differents. ur-niya, 36:5 (2000), 579–597 | MR | Zbl

[11] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1984 | MR

[12] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978 | Zbl

[13] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[14] Maksimov V. I., “Dinamicheskii metod nevyazki v zadache rekonstruktsii vkhoda”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 297–307 | MR | Zbl

[15] Maksimov V. I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, Prikl. matem. i mekhan., 65:3 (2001), 385–390 | MR

[16] Kryazhimskii A. B., Osipov Yu. S., “Obratnye zadachi dinamiki i upravlyaemye modeli”, Mekhan. i nauchno-tekhn. progress, v. 1, Nauka, M., 1987, 196–211 | MR

[17] Kryazhimskii A. V., Osipov Yu. S., “On positional calculation of normal controls in dynamical systems”, Probl. Control and Inform. Theory, 13:6 (1984), 425–436 | MR

[18] Maksimov V. I., “On the reconstruction of a control through results of observations”, Proc. Third European Control Conf. (Rome, Italy), 1995, 3766–3771

[19] Kryazhimskii A. B., Osipov Yu. S., “Ob ustoichivom pozitsionnom vosstanovlenii upravleniya po izmereniyam chasti koordinat”, Sb. nauchn. tr., UrO AN SSSR, Sverdlovsk, 1989, 33–47 | MR

[20] Maksimov V. I., “Rekonstruktsiya vkhodnykh vozdeistvii pri izmerenii chasti koordinat”, Itogi nauki i tekhn. Optimalnoe upravlenie, 99, VINITI, M., 2002, 21–32

[21] Martyanov A. S., “O rekonstruktsii upravlenii po izmereniyu chasti koordinat”, Izv. RAN. Teoriya i sistemy upravleniya, 44:4 (2004), 52–60 | MR

[22] Vdovin A. Yu., “Otsenki pogreshnosti v zadache dinamicheskogo vosstanovleniya upravleniya”, Zadachi pozitsionnogo modelirovaniya, Sverdlovsk, 1986, 3–11 | Zbl