Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 212-223

Voir la notice de l'article provenant de la source Math-Net.Ru

Sets of lattice cubature rules with the lattice of nodes $\lambda_k=M_k^\perp$, where the lattice $M_k$ is generated by the matrix $kB+C$ ($B$ and $C$ are integer square matrices of order $n$ independent of $k$ and $\det(B)\ne 0$) are considered. At $n=3$, for each integer $r$ ($-4\le r\le 1$), the set $S^{(\min)}$ with the trigonometric $(6k+r)$ property and the asymptotically minimal number of nodes $N^{(\min)}(k)$ is found. This means that, for any set $S^{(\min)}$ with the trigonometric $(6k+r)$ property and the number of nodes $N(k)$, the inequality $N(k)\ge N^{(min)}(k)$ holds true if $k$ is sufficiently large. Certain properties of the optimal sets $S^{(min)}$ and the nearest (in terms of the number of nodes) sets $S^{(\min+)}$ are investigated.
@article{ZVMMF_2005_45_2_a3,
     author = {N. N. Osipov},
     title = {Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {212--223},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/}
}
TY  - JOUR
AU  - N. N. Osipov
TI  - Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 212
EP  - 223
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/
LA  - ru
ID  - ZVMMF_2005_45_2_a3
ER  - 
%0 Journal Article
%A N. N. Osipov
%T Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 212-223
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/
%G ru
%F ZVMMF_2005_45_2_a3
N. N. Osipov. Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 212-223. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/