Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 212-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sets of lattice cubature rules with the lattice of nodes $\lambda_k=M_k^\perp$, where the lattice $M_k$ is generated by the matrix $kB+C$ ($B$ and $C$ are integer square matrices of order $n$ independent of $k$ and $\det(B)\ne 0$) are considered. At $n=3$, for each integer $r$ ($-4\le r\le 1$), the set $S^{(\min)}$ with the trigonometric $(6k+r)$ property and the asymptotically minimal number of nodes $N^{(\min)}(k)$ is found. This means that, for any set $S^{(\min)}$ with the trigonometric $(6k+r)$ property and the number of nodes $N(k)$, the inequality $N(k)\ge N^{(min)}(k)$ holds true if $k$ is sufficiently large. Certain properties of the optimal sets $S^{(min)}$ and the nearest (in terms of the number of nodes) sets $S^{(\min+)}$ are investigated.
@article{ZVMMF_2005_45_2_a3,
     author = {N. N. Osipov},
     title = {Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {212--223},
     year = {2005},
     volume = {45},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/}
}
TY  - JOUR
AU  - N. N. Osipov
TI  - Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 212
EP  - 223
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/
LA  - ru
ID  - ZVMMF_2005_45_2_a3
ER  - 
%0 Journal Article
%A N. N. Osipov
%T Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 212-223
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/
%G ru
%F ZVMMF_2005_45_2_a3
N. N. Osipov. Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 212-223. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/

[1] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[2] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl

[3] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210 | MR | Zbl

[4] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU, 1959, no. 4, 3–18 | MR

[5] Bakhvalov N. S., “Ob optimalnykh otsenkakh skhodimosti kvadraturnykh protsessov i metodov integrirovaniya tipa Monte-Karlo na klassakh funktsii”, Chisl. metody resheniya differents. i integr. ur-nii i kvadraturnye f-ly, Izd-vo AN SSSR, M., 1964, 5–63

[6] Sharygin I. F., “Otsenki snizu pogreshnosti kvadraturnykh formul na klassakh funktsii”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 370–376 | Zbl

[7] Frolov K. K., “O svyazi kvadraturnykh formul i podreshetok reshetki tselykh vektorov”, Dokl. AN SSSR, 232:1 (1977), 40–43 | MR | Zbl

[8] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya funktsii trekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 28:10 (1998), 1583–1586 | MR

[9] Noskov M. V., “Formuly priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, 15, Izd-vo LGU, L., 1988, 19–22 | MR

[10] Noskov M. V., “O formulakh priblizhennogo integrirovaniya dlya periodicheskikh funktsii”, Metody vychislenii, 16, Izd-vo LGU, L., 1991, 16–23

[11] Minkowski H., “Dichteste gitterförmige Lagerung kongruenter Körper”, Nachr. Köning Ges. Wiss. Göttingen, 1904, 311–355 | Zbl

[12] Osipov H. H., “O postroenii serii reshetchatykh kubaturnykh formul ranga 1, tochnykh na trigonometricheskikh mnogochlenakh”, Zh. vychisl. matem. i matem. fiz., 42:11 (2002), 1627–1635 | MR | Zbl

[13] Sloan I. H., Kachoyan P. J., “Lattice methods for multiple integration: theory, error analysis and examples”, SIAM J. Numer. Analys., 24 (1987), 116–128 | DOI | MR | Zbl

[14] Sloan I. H., Lyness J. N., “The representation of lattice quadrature rules as multiple sums”, Math. Comput., 52 (1989), 81–94 | DOI | MR | Zbl

[15] Lyness J. N., Keast P., “Application of the Smith normal form to the structure of lattice rules”, SIAM J. Matrix Analys and Appl., 16:1, 218–231 | DOI | MR | Zbl

[16] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[17] Lyness J. N., “An introduction to lattice rules and their generator matrices”, IMA J. Numer. Analys., 9 (1989), 405–419 | DOI | MR | Zbl

[18] Noskov M. B., Semenova A. P., “Kubaturnye formuly povyshennoi trigonometricheskoi tochnosti dlya periodicheskikh funktsii chetyrekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 5–11 | MR | Zbl

[19] Cools R., Lyness J. N., “Three- and four-dimensional $K$-optimal lattice rules of moderate trigonometric degree”, Math. Comput., 70 (2001), 1549–1567 | DOI | MR | Zbl