Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 212-223
Voir la notice de l'article provenant de la source Math-Net.Ru
Sets of lattice cubature rules with the lattice of nodes $\lambda_k=M_k^\perp$, where the lattice $M_k$ is generated by the matrix $kB+C$ ($B$ and $C$ are integer square matrices of order $n$ independent of $k$ and $\det(B)\ne 0$) are considered. At $n=3$, for each integer $r$ ($-4\le r\le 1$), the set $S^{(\min)}$ with the trigonometric $(6k+r)$ property and the asymptotically minimal number of nodes $N^{(\min)}(k)$ is found. This means that, for any set $S^{(\min)}$ with the trigonometric $(6k+r)$ property and the number of nodes $N(k)$, the inequality $N(k)\ge N^{(min)}(k)$ holds true if $k$ is sufficiently large. Certain properties of the optimal sets $S^{(min)}$ and the nearest (in terms of the number of nodes) sets $S^{(\min+)}$ are investigated.
@article{ZVMMF_2005_45_2_a3,
author = {N. N. Osipov},
title = {Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {212--223},
publisher = {mathdoc},
volume = {45},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/}
}
TY - JOUR AU - N. N. Osipov TI - Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 212 EP - 223 VL - 45 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/ LA - ru ID - ZVMMF_2005_45_2_a3 ER -
%0 Journal Article %A N. N. Osipov %T Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 212-223 %V 45 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/ %G ru %F ZVMMF_2005_45_2_a3
N. N. Osipov. Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 212-223. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/