@article{ZVMMF_2005_45_2_a3,
author = {N. N. Osipov},
title = {Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {212--223},
year = {2005},
volume = {45},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/}
}
TY - JOUR AU - N. N. Osipov TI - Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 212 EP - 223 VL - 45 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/ LA - ru ID - ZVMMF_2005_45_2_a3 ER -
%0 Journal Article %A N. N. Osipov %T Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 212-223 %V 45 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/ %G ru %F ZVMMF_2005_45_2_a3
N. N. Osipov. Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 212-223. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a3/
[1] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR
[2] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl
[3] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210 | MR | Zbl
[4] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU, 1959, no. 4, 3–18 | MR
[5] Bakhvalov N. S., “Ob optimalnykh otsenkakh skhodimosti kvadraturnykh protsessov i metodov integrirovaniya tipa Monte-Karlo na klassakh funktsii”, Chisl. metody resheniya differents. i integr. ur-nii i kvadraturnye f-ly, Izd-vo AN SSSR, M., 1964, 5–63
[6] Sharygin I. F., “Otsenki snizu pogreshnosti kvadraturnykh formul na klassakh funktsii”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 370–376 | Zbl
[7] Frolov K. K., “O svyazi kvadraturnykh formul i podreshetok reshetki tselykh vektorov”, Dokl. AN SSSR, 232:1 (1977), 40–43 | MR | Zbl
[8] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya funktsii trekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 28:10 (1998), 1583–1586 | MR
[9] Noskov M. V., “Formuly priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, 15, Izd-vo LGU, L., 1988, 19–22 | MR
[10] Noskov M. V., “O formulakh priblizhennogo integrirovaniya dlya periodicheskikh funktsii”, Metody vychislenii, 16, Izd-vo LGU, L., 1991, 16–23
[11] Minkowski H., “Dichteste gitterförmige Lagerung kongruenter Körper”, Nachr. Köning Ges. Wiss. Göttingen, 1904, 311–355 | Zbl
[12] Osipov H. H., “O postroenii serii reshetchatykh kubaturnykh formul ranga 1, tochnykh na trigonometricheskikh mnogochlenakh”, Zh. vychisl. matem. i matem. fiz., 42:11 (2002), 1627–1635 | MR | Zbl
[13] Sloan I. H., Kachoyan P. J., “Lattice methods for multiple integration: theory, error analysis and examples”, SIAM J. Numer. Analys., 24 (1987), 116–128 | DOI | MR | Zbl
[14] Sloan I. H., Lyness J. N., “The representation of lattice quadrature rules as multiple sums”, Math. Comput., 52 (1989), 81–94 | DOI | MR | Zbl
[15] Lyness J. N., Keast P., “Application of the Smith normal form to the structure of lattice rules”, SIAM J. Matrix Analys and Appl., 16:1, 218–231 | DOI | MR | Zbl
[16] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR
[17] Lyness J. N., “An introduction to lattice rules and their generator matrices”, IMA J. Numer. Analys., 9 (1989), 405–419 | DOI | MR | Zbl
[18] Noskov M. B., Semenova A. P., “Kubaturnye formuly povyshennoi trigonometricheskoi tochnosti dlya periodicheskikh funktsii chetyrekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 5–11 | MR | Zbl
[19] Cools R., Lyness J. N., “Three- and four-dimensional $K$-optimal lattice rules of moderate trigonometric degree”, Math. Comput., 70 (2001), 1549–1567 | DOI | MR | Zbl