A note on the convergence of nonstationary finite-difference analogues
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 204-211
Cet article a éte moissonné depuis la source Math-Net.Ru
An efficient modification of a finite-difference analogue of Halley's method is proposed. An iterative procedure ensures that the approximations converge to the desired root of the nonlinear equation $f(x)=0$.
@article{ZVMMF_2005_45_2_a2,
author = {V. Hristov and A. I. Iliev and N. V. Kyurkchiev},
title = {A note on the convergence of nonstationary finite-difference analogues},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {204--211},
year = {2005},
volume = {45},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a2/}
}
TY - JOUR AU - V. Hristov AU - A. I. Iliev AU - N. V. Kyurkchiev TI - A note on the convergence of nonstationary finite-difference analogues JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 204 EP - 211 VL - 45 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a2/ LA - en ID - ZVMMF_2005_45_2_a2 ER -
%0 Journal Article %A V. Hristov %A A. I. Iliev %A N. V. Kyurkchiev %T A note on the convergence of nonstationary finite-difference analogues %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 204-211 %V 45 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a2/ %G en %F ZVMMF_2005_45_2_a2
V. Hristov; A. I. Iliev; N. V. Kyurkchiev. A note on the convergence of nonstationary finite-difference analogues. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 204-211. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a2/
[1] Liangzang X., Xiangjiand M., “Convergence of an iteration method without derivative”, Numer. Math. J. Chinese Univ. English Ser., 11 (2002), 113–120 | MR | Zbl
[2] Ralston A., A first course in numerical analysis, McGraw-Hill, New York, 1965 | MR | Zbl
[3] Xinghua W., Shiming Z., Danfu H., “Convergence on Euler's series, the iteration of Euler's and Halley's families”, Acta Math. Sinica, 33 (1990), 721–738 | MR | Zbl
[4] Traub J., Iterative method for solution of equations, Chelsea Publ. Co., New York, 1982 | Zbl
[5] Xinghua W., “On the zero of analytic functions”, Nature J., 4:6 (1981), 474 (in Chinese)