Solution of the eigenvalue problem in the framework of the electron density method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 327-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of finding the spectrum of a given electron density functional is reduced to the algebraic eigenvalue problem for a matrix depending only on the density. This technique is especially effective as applied to molecules, clusters, and solids. As usual, the accuracy of the result is determined by the completeness of the given basis.
@article{ZVMMF_2005_45_2_a14,
     author = {V. V. Popov},
     title = {Solution of the eigenvalue problem in the framework of the electron density method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {327--329},
     year = {2005},
     volume = {45},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a14/}
}
TY  - JOUR
AU  - V. V. Popov
TI  - Solution of the eigenvalue problem in the framework of the electron density method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 327
EP  - 329
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a14/
LA  - ru
ID  - ZVMMF_2005_45_2_a14
ER  - 
%0 Journal Article
%A V. V. Popov
%T Solution of the eigenvalue problem in the framework of the electron density method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 327-329
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a14/
%G ru
%F ZVMMF_2005_45_2_a14
V. V. Popov. Solution of the eigenvalue problem in the framework of the electron density method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 327-329. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a14/

[1] Hohenberg P., Kohn W., “Inhomogeneous electron gas”, Phys. Rev., 136:3 (1964), B864–B876 | DOI | MR

[2] Kohn W., Sham L. J., “Exchange and correlation effects”, Phys. Rev., 140:4 (1965), A1133–A1140 | DOI | MR

[3] Barth von U., Hedin L., “A local exhange-correlation potential for the spin-polarized case”, J. Phys. C, 5:13 (1972), 1629–1642 | DOI

[4] Vosko S. H., Wilk L., Nusair M., “Accurate spin-dependent electron liquid correlation energies for local spin density calculation”, Canad. J. Phys., 58:8 (1980), 1200–1215 | DOI | MR

[5] Perdew J. P., Wang L., “Accurate and simple analytic representation of the electron gas correlation energy”, Phys. Rev. B, 45:23 (1992), 13244–13249 | DOI

[6] Huzinaga S., “Gaussian-type functions for polyatomic systems, 1”, J. Chem. Phys., 42:4 (1965), 1293–1302 | DOI

[7] Wachters A. J. H., “Gaussian basis set for molecular wave functions containing third-row atoms”, J. Chem. Phys., 52:3 (1970), 1033–1036 | DOI

[8] Briddon P. R., Jones R., “LDA calculations using a basis of gaussian orbitals”, Phys. Stat. Sol. (b), 217 (2000), 131–172 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI