Convergence of finite-difference schemes for Poisson's equation with a dynamic boundary condition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 287-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence of a finite-difference scheme applied to a two-dimensional elliptic equation with a dynamic boundary condition is analyzed. An estimate for the convergence rate is derived that is nearly compatible with the smoothness of the solution to the original boundary value problem (with an additional logarithmic factor) in a special discrete norm of the Sobolev type.
@article{ZVMMF_2005_45_2_a11,
     author = {L. G. Volkov and B. S. Jovanovi\'c},
     title = {Convergence of finite-difference schemes for {Poisson's} equation with a dynamic boundary condition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {287--297},
     year = {2005},
     volume = {45},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a11/}
}
TY  - JOUR
AU  - L. G. Volkov
AU  - B. S. Jovanović
TI  - Convergence of finite-difference schemes for Poisson's equation with a dynamic boundary condition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 287
EP  - 297
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a11/
LA  - ru
ID  - ZVMMF_2005_45_2_a11
ER  - 
%0 Journal Article
%A L. G. Volkov
%A B. S. Jovanović
%T Convergence of finite-difference schemes for Poisson's equation with a dynamic boundary condition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 287-297
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a11/
%G ru
%F ZVMMF_2005_45_2_a11
L. G. Volkov; B. S. Jovanović. Convergence of finite-difference schemes for Poisson's equation with a dynamic boundary condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 287-297. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a11/

[1] Eschet J., “Quasilinear parabolic systems with dynamical boundary conditions”, Communs Partial Different. Equations, 19 (1993), 1309–1364 | DOI | MR

[2] Lykov A. V., Teplomassoobmen, Energiya, M., 1978

[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[4] Vabischevich P. N., “Chislennoe reshenie zadachi dlya ellipticheskogo uravneniya s nestatsionarnymi granichnymi usloviyami”, Matem. modelirovanie, 7:7 (1995), 49–60 | MR

[5] Vulkov L., “Application of Steklov-type eigenvalues problems to convergence of difference schemes for parabolic and hyperbolic equation with dynamical boundary conditions”, Lect. Notes. Comput. Sci., 1196, 1997, 557–564 | MR

[6] Braianov I., “Convergence of a Crank–Nicolson difference scheme for heat equation with interface in the heat flow and concentrated heat capacity”, Lect. Notes. Comput. Sci., 1196, 1997, 58–65 | MR

[7] Brayanov I. A., Volkov L. G., “Odnorodnye raznostnye skhemy dlya uravneniya teploprovodnosti so sosredotochennoi teploemkostyu”, Zh. vychisl. matem. i matem. fiz., 39:2 (1999), 254–261 | MR | Zbl

[8] Jovanović B. S., Vulkov L. G., “Operator's approach to the problems with concentrated factors”, Lect. Notes. Comput. Sci., 1988, 2001, 439–450 | MR | Zbl

[9] Jovanović B. S., Vulkov L. G., “On the convergence of finite difference schemes for the heat equation with concentrated capacity”, Numer. Math., 89:4 (2001), 715–734 | MR | Zbl

[10] Jovanović B. S., Vulkov L. G., “On the rate of convergence of difference schemes for the Poisson equation with dynamical interface conditions”, Comput. Methods Appl. Math., 3:1 (2003), 177–188 | MR | Zbl

[11] Jovanović B. S., Vulkov L. G., “On the convergence of difference schemes for hyperbolic problems with concentrated data”, SIAM J. Numer. Analys., 41:2 (2003), 516–538 | DOI | MR | Zbl

[12] Lions J. L., Magenes E., Non homogeneous boundary value problems and applications, Springer, Berlin–New York, 1972

[13] Andreev V. B., “Ustoichivost raznostnykh skhem dlya ellipticheskikh uravnenii po granichnym usloviyam Dirikhle”, Zh. vychisl. matem. i matem. fiz., 12:3 (1972), 598–611 | Zbl

[14] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Nauka, M., 1987

[15] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl

[16] Jovanović B. S., Popović B. Z., “Convergence of a finite difference scheme for the third boundary value problem for elliptic equation with variable coefficients”, Comput. Methods Appl. Math., 1:4 (2001), 356–366 | MR | Zbl

[17] Iovanovich B. S., Matus P. P., Scheglik B. C., “Raznostnye skhemy na neravnomernykh setkakh dlya parabolicheskogo uravneniya s peremennymi koeffitsientami i obobschennymi resheniyami”, Dokl. HAH Belarusi, 42:6 (1998), 38–14 | MR