@article{ZVMMF_2005_45_2_a11,
author = {L. G. Volkov and B. S. Jovanovi\'c},
title = {Convergence of finite-difference schemes for {Poisson's} equation with a dynamic boundary condition},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {287--297},
year = {2005},
volume = {45},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a11/}
}
TY - JOUR AU - L. G. Volkov AU - B. S. Jovanović TI - Convergence of finite-difference schemes for Poisson's equation with a dynamic boundary condition JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 287 EP - 297 VL - 45 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a11/ LA - ru ID - ZVMMF_2005_45_2_a11 ER -
%0 Journal Article %A L. G. Volkov %A B. S. Jovanović %T Convergence of finite-difference schemes for Poisson's equation with a dynamic boundary condition %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 287-297 %V 45 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a11/ %G ru %F ZVMMF_2005_45_2_a11
L. G. Volkov; B. S. Jovanović. Convergence of finite-difference schemes for Poisson's equation with a dynamic boundary condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 2, pp. 287-297. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_2_a11/
[1] Eschet J., “Quasilinear parabolic systems with dynamical boundary conditions”, Communs Partial Different. Equations, 19 (1993), 1309–1364 | DOI | MR
[2] Lykov A. V., Teplomassoobmen, Energiya, M., 1978
[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[4] Vabischevich P. N., “Chislennoe reshenie zadachi dlya ellipticheskogo uravneniya s nestatsionarnymi granichnymi usloviyami”, Matem. modelirovanie, 7:7 (1995), 49–60 | MR
[5] Vulkov L., “Application of Steklov-type eigenvalues problems to convergence of difference schemes for parabolic and hyperbolic equation with dynamical boundary conditions”, Lect. Notes. Comput. Sci., 1196, 1997, 557–564 | MR
[6] Braianov I., “Convergence of a Crank–Nicolson difference scheme for heat equation with interface in the heat flow and concentrated heat capacity”, Lect. Notes. Comput. Sci., 1196, 1997, 58–65 | MR
[7] Brayanov I. A., Volkov L. G., “Odnorodnye raznostnye skhemy dlya uravneniya teploprovodnosti so sosredotochennoi teploemkostyu”, Zh. vychisl. matem. i matem. fiz., 39:2 (1999), 254–261 | MR | Zbl
[8] Jovanović B. S., Vulkov L. G., “Operator's approach to the problems with concentrated factors”, Lect. Notes. Comput. Sci., 1988, 2001, 439–450 | MR | Zbl
[9] Jovanović B. S., Vulkov L. G., “On the convergence of finite difference schemes for the heat equation with concentrated capacity”, Numer. Math., 89:4 (2001), 715–734 | MR | Zbl
[10] Jovanović B. S., Vulkov L. G., “On the rate of convergence of difference schemes for the Poisson equation with dynamical interface conditions”, Comput. Methods Appl. Math., 3:1 (2003), 177–188 | MR | Zbl
[11] Jovanović B. S., Vulkov L. G., “On the convergence of difference schemes for hyperbolic problems with concentrated data”, SIAM J. Numer. Analys., 41:2 (2003), 516–538 | DOI | MR | Zbl
[12] Lions J. L., Magenes E., Non homogeneous boundary value problems and applications, Springer, Berlin–New York, 1972
[13] Andreev V. B., “Ustoichivost raznostnykh skhem dlya ellipticheskikh uravnenii po granichnym usloviyam Dirikhle”, Zh. vychisl. matem. i matem. fiz., 12:3 (1972), 598–611 | Zbl
[14] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Nauka, M., 1987
[15] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl
[16] Jovanović B. S., Popović B. Z., “Convergence of a finite difference scheme for the third boundary value problem for elliptic equation with variable coefficients”, Comput. Methods Appl. Math., 1:4 (2001), 356–366 | MR | Zbl
[17] Iovanovich B. S., Matus P. P., Scheglik B. C., “Raznostnye skhemy na neravnomernykh setkakh dlya parabolicheskogo uravneniya s peremennymi koeffitsientami i obobschennymi resheniyami”, Dokl. HAH Belarusi, 42:6 (1998), 38–14 | MR