On the blowup of solutions to semilinear pseudoparabolic equations with rapidly growing nonlinearities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 145-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first initial-boundary value problems for nonlinear pseudoparabolic equations with rapidly growing nonlinearities are considered. The unique solvability is proved in the classical and weakened senses. In this case, in a finite amount of time, the maximum absolute value of the solution with respect to the spatial variables becomes infinite; i.e., a strong discontinuity of the solutions to the problems under consideration is formed in a finite amount of time.
@article{ZVMMF_2005_45_1_a9,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {On the blowup of solutions to semilinear pseudoparabolic equations with rapidly growing nonlinearities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {145--155},
     year = {2005},
     volume = {45},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a9/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - On the blowup of solutions to semilinear pseudoparabolic equations with rapidly growing nonlinearities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 145
EP  - 155
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a9/
LA  - ru
ID  - ZVMMF_2005_45_1_a9
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T On the blowup of solutions to semilinear pseudoparabolic equations with rapidly growing nonlinearities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 145-155
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a9/
%G ru
%F ZVMMF_2005_45_1_a9
M. O. Korpusov; A. G. Sveshnikov. On the blowup of solutions to semilinear pseudoparabolic equations with rapidly growing nonlinearities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 145-155. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a9/

[1] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Ration. Mech. and Analys., 51 (1973), 371–386 | MR | Zbl

[2] Korpusov M. O., Sveshnikov A. G., “Trekhmernye nelineinye evolyutsionnye uravneniya psevdoparabolicheskogo tipa v zadachakh matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 43:12 (2003), 1825–1834 | MR

[3] Kozhanov A. I., “Parabolicheskie uravneniya s nelineinym nelokalnym istochnikom”, Sibirskii matem. zhurnal, 35:5 (1994), 1062–1073 | MR | Zbl

[4] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravnenii tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Matem. zametki, 65:1 (1999), 70–75 | MR | Zbl

[5] Fujita H., “On the blowing up of solutions to the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Univ. Tokyo, Sect. IA, 13 (1966), 109–124 | MR | Zbl

[6] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Ration. Mech. and Analys., 51 (1973), 371–386 | MR | Zbl

[7] Amann H., Fila M., “A fujita-type theorem for the Laplace equation with a dynamical boundary condition”, Acta Math. Univ. Comenianae, 66:2 (1997), 321–328 | MR | Zbl

[8] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[9] Rossi J. D., “The blow-up rate for a semilinear parabolic equation with a nonlinear boundary condition”, Acta. Math. Univ. Comenianae, 67:2 (1998), 343–350 | MR | Zbl

[10] Egorov Yu. V., Kondratiev V. A., “On blow-up solutions for parabolic equations of second order”, Different. Equations, Asymptotic Analys. and Math. Phys., Math. Res., 100, Akademie, Berlin, 1997, 77–84 | MR | Zbl

[11] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii differentsialnykh neravenstv v chastnykh proizvodnykh”, Tr. Matem. in-ta RAN, M., 2001

[12] Laptev G. G., “Ob otsutstvii reshenii odnogo klassa singulyarnykh polulineinykh differentsialnykh neravenstv”, Tr. Matem. in-ta RAN, 232, M., 2001, 223–235 | MR | Zbl

[13] Korpusov M. O., Sveshnikov A. G., “O razrushenii za konechnoe vremya resheniya nachalno-kraevoi zadachi dlya polulineinogo uravneniya sostavnogo tipa”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1716–1724 | MR | Zbl

[14] Korpusov M. O., “K voprosu o razrushenii za konechnoe vremya resheniya zadachi Koshi dlya psevdoparabolicheskogo uravneniya $Au_t=F(u)$”, Differents. ur-niya, 38:12 (2002), 1–6 | MR

[15] Korpusov M. O., Sveshnikov A. G., “O razreshimosti silno nelineinogo uravneniya psevdoparabolicheskogo tipa s dvoinoi nelineinostyu”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 987–1004 | MR | Zbl

[16] Korpusov M. O., ““Razrushenie” resheniya psevdoparabolicheskogo uravneniya s proizvodnoi po vremeni ot nelineinogo ellipticheskogo operatora”, Zh. vychisl. matem. i matem. fiz., 42:12 (2002), 1788–1795 | MR | Zbl