Asymptotics of a reduced logarithmic capacity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 126-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The homogeneous Dirichlet problem for the Laplace operator in a layer with a hole $G$ is considered. Periodicity conditions are imposed on the planes of the layer. A solution is sought in the class of functions that increase logarithmically at infinity. The reduced logarithmic capacity of the closed domain $\overline G$ is defined as a generalization of the logarithmic capacity (the outer conformal radius) of a closed plane domain. Formal asymptotics are constructed for the following shapes of $G$: an almost cylindrical domain, a thin cylinder of low height, a domain of small diameter, and a narrow cylinder of small thickness.
@article{ZVMMF_2005_45_1_a8,
     author = {I. I. Argatov},
     title = {Asymptotics of a~reduced logarithmic capacity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {126--144},
     year = {2005},
     volume = {45},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a8/}
}
TY  - JOUR
AU  - I. I. Argatov
TI  - Asymptotics of a reduced logarithmic capacity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 126
EP  - 144
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a8/
LA  - ru
ID  - ZVMMF_2005_45_1_a8
ER  - 
%0 Journal Article
%A I. I. Argatov
%T Asymptotics of a reduced logarithmic capacity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 126-144
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a8/
%G ru
%F ZVMMF_2005_45_1_a8
I. I. Argatov. Asymptotics of a reduced logarithmic capacity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 126-144. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a8/

[1] Nazarov S. A., “Osrednenie kraevykh zadach v oblasti, soderzhaschei tonkuyu polost s periodicheski izmenyayuschimsya secheniem”, Tr. Mosk. matem. ob-va, 53, M., 1990, 98–129

[2] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[3] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[4] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[5] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[6] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Gostekhteorizdat, M., 1953

[7] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[8] Dzhavadov M. G., “Asimptotika resheniya kraevoi zadachi dlya ellipticheskogo uravneniya v tonkikh oblastyakh”, Differents. ur-niya, 4:10 (1968), 1901–1909 | Zbl

[9] Zino I. E., Tropp E. A., Asimptoticheskie metody v zadachakh teorii teploprovodnosti i termouprugosti, Izd-vo LGU, L., 1978

[10] Nazarov S. A., Vvedenie v asimptoticheskie metody teorii uprugosti, Izd-vo LGU, L., 1983

[11] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh zadach v oblastyakh s konicheskimi tochkami”, Math. Nahr., 76:1 (1977), 29–60

[12] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[13] Mazja V. G., Nasarow S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Akad.-Verlag, Berlin, 1991

[14] Nazarov S. A., “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh razlozhenii”, Tr. SPb. matem. ob-va, 5, SPb., 1996, 112–183

[15] Smirnov V. I., Kurs vysshei matematiki, v. 4, Gostekhteorizdat, M., 1953

[16] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Teoriya kubaturnykh f-l i prilozh. funkts. analiza k zadacham matem. fiz., v. 1, Novosibirsk, 1980, 113–131 | MR | Zbl

[17] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v trekhmernoi oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116:2 (1981), 187–217 | MR

[18] Nazarov S. A.., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, Izd-vo LGU, L., 1984

[19] Argatov I. I., “Davlenie uzkogo pryamougolnogo shtampa na uprugoe osnovanie”, Izv. RAN. Mekhan. tverdogo tela, 2002, no. 2, 58–67

[20] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR