Asymptotics of a reduced logarithmic capacity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 126-144

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogeneous Dirichlet problem for the Laplace operator in a layer with a hole $G$ is considered. Periodicity conditions are imposed on the planes of the layer. A solution is sought in the class of functions that increase logarithmically at infinity. The reduced logarithmic capacity of the closed domain $\overline G$ is defined as a generalization of the logarithmic capacity (the outer conformal radius) of a closed plane domain. Formal asymptotics are constructed for the following shapes of $G$: an almost cylindrical domain, a thin cylinder of low height, a domain of small diameter, and a narrow cylinder of small thickness.
@article{ZVMMF_2005_45_1_a8,
     author = {I. I. Argatov},
     title = {Asymptotics of a~reduced logarithmic capacity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {126--144},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a8/}
}
TY  - JOUR
AU  - I. I. Argatov
TI  - Asymptotics of a reduced logarithmic capacity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 126
EP  - 144
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a8/
LA  - ru
ID  - ZVMMF_2005_45_1_a8
ER  - 
%0 Journal Article
%A I. I. Argatov
%T Asymptotics of a reduced logarithmic capacity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 126-144
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a8/
%G ru
%F ZVMMF_2005_45_1_a8
I. I. Argatov. Asymptotics of a reduced logarithmic capacity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 126-144. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a8/