Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 110-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem for a singularly perturbed elliptic convection-diffusion equation in a rectangle and in a vertical half-strip with a vector perturbation parameter $\varepsilon=(\varepsilon_1,\varepsilon_2)$ is considered. The higher derivatives of the equation and the first derivative with respect to the vertical coordinate include the parameters $\varepsilon_1$ and $\varepsilon_2$, respectively, which can take arbitrary values in the intervals $(0,1]$ and $[--1,1]$. For small values of $\varepsilon_1$, boundary layers appear in the neighborhood of various parts of the domain boundary. The type of these layers depends on the relation between $\varepsilon_1$ and $\varepsilon_2$: they can be regular, parabolic, or hyperbolic. Their characteristics also depend on the relation between $\varepsilon_1$ and $\varepsilon_2$. Using the special grid technique (these grids are condensing in the boundary layers), finite difference schemes are constructed that $\varepsilon$-uniformly converge in the maximum norm.
@article{ZVMMF_2005_45_1_a7,
     author = {G. I. Shishkin},
     title = {Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {110--125},
     year = {2005},
     volume = {45},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a7/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 110
EP  - 125
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a7/
LA  - ru
ID  - ZVMMF_2005_45_1_a7
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 110-125
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a7/
%G ru
%F ZVMMF_2005_45_1_a7
G. I. Shishkin. Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 110-125. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a7/

[1] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[2] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[3] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient., Singapore, 1996 | MR

[6] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations: convection-diffusion and flow problems, Springer, Berlin, 1996 | MR

[7] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall/CRC, Boca Raton, 2000 | MR | Zbl

[8] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974

[9] Shishkin G. I., “Setochnaya approksimatsiya ellipticheskikh uravnenii konvektsii-diffuzii v neogranichennoi oblasti pri nalichii razlichnykh tipov pogranichnykh sloev”, Dokl. RAN, 392:4 (2003), 1–5 | MR

[10] Shishkin G. I., Grid approximation of singularly perturbed elliptic convection-diffusion equations in unbounded domains, Preprint TCDMATH 04–01. Rept Ser., School Math. Trinity College, Dublin, 2004

[11] Emelyanov K. B., “Raznostnaya skhema dlya trekhmernogo ellipticheskogo uravneniya s malym parametrom pri starshikh proizvodnykh”, Kraevye zadachi dlya ur-nii matem. fiz., UNTs AN SSSR, Sverdlovsk, 1973, 30–42

[12] Clavero C., Gracia J. L., Lisbona F., Shishkin G. I., “A robust method of improved order for convection-diffusion problems in a domain with characteristic boundaries”, Z. angew. Math. und Mech., 82:9 (2002), 631–647 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] Han H., Kellogg R. B., “Differentiability properties of solutions of the equation $-\varepsilon^2\Delta u+ru=f(x, y)$ in a square”, SIAM J. Math. Analys., 21:2 (1990), 394–408 | DOI | MR | Zbl

[14] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[15] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike”, Tr. Matem. in-ta AN SSSR, 77, M., 1965, 89–112 | Zbl

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[17] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[18] Shishkin G. I., “Approximation of singularly perturbed parabolic reaction-diffusion equations with nonsmooth data”, Comput. Meth. Appl. Math., 1:3 (2001), 298–315 | MR | Zbl

[19] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi matem. nauk, 17:3 (1962), 3–146 | MR

[20] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[21] Shishkin G. I., “Setochnye approksimatsii s uluchshennoi skorostyu skhodimosti dlya singulyarno vozmuschennykh ellipticheskikh uravnenii v oblastyakh s kharakteristicheskimi granitsami”, Sibirskii zh. vychisl. matem., 5:1 (2002), 71–92 | Zbl