Construction of asymptotics of a discrete solution based on nonclassical differential approximations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 88-109
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed that yields an asymptotic expansion of a discrete solution to the Riemann problem. The method is based on the concept of the determining coefficient of an asymptotic expansion, which is used to construct a nonclassical differential approximation to a finite-difference scheme. The method is described by using linear finite-difference schemes approximating the linear advection equation. Asymptotic expansions of a discrete solution are constructed for explicit two-level schemes with artificial viscosity and dispersion and for a symmetric compact finite-difference scheme with second- and fourth-order conservative artificial viscosities. It is shown that the structure of the discrete solution on a shock front is fairly accurately described by the expansions constructed.
@article{ZVMMF_2005_45_1_a6,
     author = {O. A. Kovyrkina and V. V. Ostapenko},
     title = {Construction of asymptotics of a discrete solution based on nonclassical differential approximations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {88--109},
     year = {2005},
     volume = {45},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a6/}
}
TY  - JOUR
AU  - O. A. Kovyrkina
AU  - V. V. Ostapenko
TI  - Construction of asymptotics of a discrete solution based on nonclassical differential approximations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 88
EP  - 109
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a6/
LA  - ru
ID  - ZVMMF_2005_45_1_a6
ER  - 
%0 Journal Article
%A O. A. Kovyrkina
%A V. V. Ostapenko
%T Construction of asymptotics of a discrete solution based on nonclassical differential approximations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 88-109
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a6/
%G ru
%F ZVMMF_2005_45_1_a6
O. A. Kovyrkina; V. V. Ostapenko. Construction of asymptotics of a discrete solution based on nonclassical differential approximations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 88-109. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a6/

[1] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR

[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[3] Friedrichs K. O., Lax P. D., “Systems of conservation equation with convex extension”, Proc. Nat. Acad. Sci. USA, 68:8 (1971), 1686–1688 | DOI | MR | Zbl

[4] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1993 | MR

[5] Atavin A. A., Gladyshev M. T., Shugrin S. M., “O razryvnykh techeniyakh v otkrytykh ruslakh”, Dinamika sploshnoi sredy AN SSSR, 22, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1975, 37–64

[6] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[7] Lax P., Wendroff B., “Systems of conservation laws”, Communs Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[8] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communs Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl

[9] Godunov C. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl

[10] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl

[11] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[12] Sweby P. K., “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM J. Numer. Analys., 21 (1984), 995–1011 | DOI | MR | Zbl

[13] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309 | DOI | MR | Zbl

[14] Van Leer B., “Toward the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | MR

[15] Pinchukov V. I., “O postroenii monotonnykh skhem tipa prediktor-korrektor proizvolnogo poryadka approksimatsii”, Matem. modelirovanie, 3:9 (1991), 95–103 | MR | Zbl

[16] Ostapenko V. V., “Ob ekvivalentnykh opredeleniyakh ponyatiya konservativnosti dlya konechno-raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 29:8 (1989), 1114–1128 | MR

[17] Ostapenko V. V., “Ob approksimatsii zakonov sokhraneniya raznostnymi skhemami skvoznogo scheta”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1405–1417 | MR

[18] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya (primenenie k gazovoi dinamike), Nauka, Novosibirsk, 1985 | MR | Zbl

[19] Zhukov A. I., “Predelnaya teorema dlya raznostnykh operatorov”, Uspekhi matem. nauk, 14:5 (1959), 129–136 | MR | Zbl

[20] Ivanov M. Ya., Koretskii V. V., Kurochkina N. Ya., “Issledovanie svoistv raznostnykh skhem skvoznogo scheta pervogo poryadka approksimatsii”, Chislennye metody mekhan. sploshnoi sredy, 11, no. 1, ITPM SO AN SSSR, Novosibirsk, 1980, 81–110 | MR

[21] Ivanov M. Ya., “K analizu mekhanizma ostsillyatsii chislennykh reshenii uravnenii gidrodinamiki”, Zh. vychisl. matem. i matem. fiz., 22:2 (1982), 411–417 | MR | Zbl

[22] Ostapenko V. V., “Razlozhenie raznostnogo resheniya na fronte udarnoi volny”, Dokl. AN SSSR, 320:2 (1991), 275–279 | MR | Zbl

[23] Ostapenko V. V., “Asimptoticheskoe razlozhenie raznostnogo resheniya na fronte udarnoi volny”, Matem. modelirovanie, 5:2 (1993), 94–103 | MR | Zbl

[24] Ostapenko V. V., “O razlozhenii raznostnogo resheniya na fronte beguschei udarnoi volny”, Zh. vychisl. matem. i matem. fiz., 31:2 (1992), 296–310 | MR

[25] Pavlov A. A., “O razlozhenii raznostnogo resheniya na fronte statsionarnogo gidravlicheskogo pryzhka”, Vychisl. metody prikl. gidrodinamiki, 1993, no. 106, 185–191 | MR | Zbl

[26] Ostapenko V. V., “Razlozhenie raznostnogo resheniya skhemy “krest” uravnenii gazovoi dinamiki na fronte udarnoi volny”, Modelirovanie v mekhan., 6 (23):2 (1992), 108–116 | MR | Zbl

[27] Ostapenko V. V., “Razlozhenie raznostnogo resheniya na fronte udarnoi volny (sluchai kvadratichnoi vyazkosti)”, Dinamika sploshnoi sredy, 1994, no. 106, 121–135 | MR

[28] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[29] Ostapenko V. V., “O postroenii raznostnykh skhem povyshennoi tochnosti dlya skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1857–1874 | MR | Zbl

[30] Ostapenko V. V., “Simmetrichnye kompaktnye skhemy s iskusstvennymi vyazkostyami povyshennogo poryadka divergentnosti”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 1019–1038 | MR | Zbl

[31] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[32] Ostapenko V. V., “O monotonnosti raznostnykh skhem”, Sibirskii matem. zhurnal, 39:5 (1998), 1111–1126 | MR | Zbl

[33] Kroener D., Numerical schemes for conservation laws, Teubner, Leipzig, 1997 | Zbl