On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 170-179
Cet article a éte moissonné depuis la source Math-Net.Ru
The concept of a hierarchical $\varepsilon$-cluster structure is defined, and the properties of such structures are studied. The uniqueness of the decomposition of a metric configuration into a hierarchy of $\varepsilon$ clusters is proved for $\varepsilon<1$. The problem of finding a hierarchical $\varepsilon$-cluster structure in a metric configuration is studied. In the general case, the complexity of this problem is $O(N^2)$. An algorithm for solving this problem is proposed that has complexity from $O(N\ln N)$ to $O(N^2)$ on some specific classes of metric configurations.
@article{ZVMMF_2005_45_1_a11,
author = {A. S. Val'kov},
title = {On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {170--179},
year = {2005},
volume = {45},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a11/}
}
TY - JOUR AU - A. S. Val'kov TI - On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 170 EP - 179 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a11/ LA - ru ID - ZVMMF_2005_45_1_a11 ER -
%0 Journal Article %A A. S. Val'kov %T On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 170-179 %V 45 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a11/ %G ru %F ZVMMF_2005_45_1_a11
A. S. Val'kov. On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 170-179. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a11/
[1] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov, I”, Kibernetika, 1977, no. 4, 5–17
[2] Aizerman M. A., Braverman E. M., Rozonoer L. I., Metod potentsialnykh funktsii v teorii obucheniya mashin, Nauka, M., 1970
[3] Maneewongvatana S., Mount D. M., “Analysis of approximate nearest neighbor searching with clustered point sets”, ALENEX 99, 1999
[4] Volmer S., “Fast approximate nearest-neighbor queries in metric feature spaces by buoy indexing”, Proc. 5th Internat. Conf. on Visual Inform. Systems (Hsin Chu, Taiwan, 2002), 36–49 | Zbl