On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 170-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of a hierarchical $\varepsilon$-cluster structure is defined, and the properties of such structures are studied. The uniqueness of the decomposition of a metric configuration into a hierarchy of $\varepsilon$ clusters is proved for $\varepsilon<1$. The problem of finding a hierarchical $\varepsilon$-cluster structure in a metric configuration is studied. In the general case, the complexity of this problem is $O(N^2)$. An algorithm for solving this problem is proposed that has complexity from $O(N\ln N)$ to $O(N^2)$ on some specific classes of metric configurations.
@article{ZVMMF_2005_45_1_a11,
     author = {A. S. Val'kov},
     title = {On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {170--179},
     year = {2005},
     volume = {45},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a11/}
}
TY  - JOUR
AU  - A. S. Val'kov
TI  - On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 170
EP  - 179
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a11/
LA  - ru
ID  - ZVMMF_2005_45_1_a11
ER  - 
%0 Journal Article
%A A. S. Val'kov
%T On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 170-179
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a11/
%G ru
%F ZVMMF_2005_45_1_a11
A. S. Val'kov. On a fast algorithm for the reconstruction of the hierarchical $\varepsilon$-cluster structure. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 170-179. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a11/

[1] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov, I”, Kibernetika, 1977, no. 4, 5–17

[2] Aizerman M. A., Braverman E. M., Rozonoer L. I., Metod potentsialnykh funktsii v teorii obucheniya mashin, Nauka, M., 1970

[3] Maneewongvatana S., Mount D. M., “Analysis of approximate nearest neighbor searching with clustered point sets”, ALENEX 99, 1999

[4] Volmer S., “Fast approximate nearest-neighbor queries in metric feature spaces by buoy indexing”, Proc. 5th Internat. Conf. on Visual Inform. Systems (Hsin Chu, Taiwan, 2002), 36–49 | Zbl