A finite difference scheme for solving two-liquid magnetohydrodynamic equations in cylindrical coordinates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 156-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A finite-difference scheme is presented for two-liquid magnetohydrodynamic equations written in cylindrical coordinates. A simple efficient method is proposed to overcome the computational difficulties arising in the neighborhood of the origin.
@article{ZVMMF_2005_45_1_a10,
     author = {V. P. Zhukov},
     title = {A finite difference scheme for solving two-liquid magnetohydrodynamic equations in cylindrical coordinates},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {156--169},
     year = {2005},
     volume = {45},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a10/}
}
TY  - JOUR
AU  - V. P. Zhukov
TI  - A finite difference scheme for solving two-liquid magnetohydrodynamic equations in cylindrical coordinates
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 156
EP  - 169
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a10/
LA  - ru
ID  - ZVMMF_2005_45_1_a10
ER  - 
%0 Journal Article
%A V. P. Zhukov
%T A finite difference scheme for solving two-liquid magnetohydrodynamic equations in cylindrical coordinates
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 156-169
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a10/
%G ru
%F ZVMMF_2005_45_1_a10
V. P. Zhukov. A finite difference scheme for solving two-liquid magnetohydrodynamic equations in cylindrical coordinates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 156-169. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a10/

[1] Mohseni K., Colonius T., “Numerical treatment of polar coordinate singularities”, J. Comput. Phys., 157 (2000), 787–795 | DOI | MR | Zbl

[2] Kadomtsev B. B., “Neustoichivost sryva v tokamakakh”, Fiz. plazmy, 1 (1975), 710–715

[3] Zhukov V. P., Fuks G., “Vliyanie effekta Kholla na protsess peresoedineniya v vintovoi geometrii”, Fiz. plazmy, 24:11 (1988), 996–1002

[4] Lerbinger R., Lucian J. F., “A new semi-implicit method for MHD computations”, J. Comput. Phys., 97 (1991), 444–459 | DOI | Zbl

[5] Charlton L. A., Holmes J. A., Lynch V. E., Carreras B. A., “Compressible linear and nonlinear resistive MHD calculations in toroidal geometry”, J. Comput. Phys., 86 (1990), 270–293 | DOI | Zbl

[6] Berezin Yu. A., Fedoruk M. P., Modelirovanie nestatsionarnykh plazmennykh protsessov, Nauka, Novosibirsk, 1993 | MR | Zbl

[7] Braginskii S. I., “Yavleniya perenosa v plazme”, Vopr. teorii plazmy, v. 1, Gosatomizdat, M., 1963, 183–271

[8] Zhukov V. P., “Sliyanie magnitnykh yacheek v modeli EMGD”, Fiz. plazmy, 28:5 (2002), 451–161

[9] Fukagata K., Kasagi Highly N., “Energy-conservation finite difference method in cylindrical coordninate system”, J. Comput. Phys., 181 (2002), 478–498 | DOI | Zbl

[10] Zhukov V. P., “Skhema s iteratsiyami dlya resheniya dvumernykh MGD-uravnenii s uchetom effekta Kholla”, Zh. vychisl. matem. i matem. fiz., 37:3 (1997), 348–354 | MR | Zbl