On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 8-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the two-dimensional case, a characterization is given of all minimal cubature formulas with the trigonometric $d$-property, where $d$ is odd. For an even $d$, all minimal lattice rules with the trigonometric $d$-property are characterized.
@article{ZVMMF_2005_45_1_a1,
     author = {N. N. Osipov},
     title = {On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {8--16},
     year = {2005},
     volume = {45},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a1/}
}
TY  - JOUR
AU  - N. N. Osipov
TI  - On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 8
EP  - 16
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a1/
LA  - ru
ID  - ZVMMF_2005_45_1_a1
ER  - 
%0 Journal Article
%A N. N. Osipov
%T On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 8-16
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a1/
%G ru
%F ZVMMF_2005_45_1_a1
N. N. Osipov. On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 8-16. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a1/

[1] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl

[2] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210 | MR | Zbl

[3] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl

[4] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU, 1959, no. 4, 3–18 | MR

[5] Noskov M. V., Schmid H. J., “Minimal cubature formulae of an even degree for the 2-torus”, Sibirskii zh. vychisl. matem., 5:3 (2002), 267–274

[6] Mysovskikh I. P., “O kubaturnykh formulakh, tochnykh dlya trigonometricheskikh mnogochlenov”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1114–1117 | MR | Zbl

[7] Sloan I. H., Kachoyan P. J., “Lattice methods for multiple integration: theory, error analysis and examples”, SIAM J. Numer. Analys., 24 (1987), 116–128 | DOI | MR | Zbl

[8] Lyness J. N., “An introduction to lattice rules and their generator matrices”, IMA J. Numer. Analys., 9 (1989), 405–419 | DOI | MR | Zbl

[9] Cools R., Sloan I. H., “Minimal cubature formulae of trigonometric degree”, Math. Comput., 65:216 (1996), 1583–1600 | DOI | MR | Zbl

[10] Noskov M. B., “Kubaturnye formuly dlya priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, 14, Izd-vo LGU, L., 1985, 15–23 | MR

[11] Möller H. M., “Lower bounds for the number of nodes in cubature formulae”, Numer. Integration, Birkhäuser, Basel, 1979, 221–230 | MR

[12] Osipov H. H., “O semeistvakh minimalnykh kubaturnykh formul chetnoi trigonometricheskoi tochnosti v 2-mernom sluchae”, Kubaturnye f-ly i ikh prilozh., IMVTs UNTs RAN, Ufa, 1996, 61–63

[13] Osipov H. H., “Simmetriya uzlov i koeffitsientov minimalnykh kubaturnykh formul s trigonometricheskim $d$-svoistvom pri nechetnom $d$”, Metody vychislenii, 19, Izd-vo SPb. un-ta, SPb., 2001, 166–171

[14] Lyness J. N., Keast P., “Application of the Smith normal form to the structure of lattice rules”, SIAM J. Numer. Analys. and Appl., 16:1 (1995), 218–231 | DOI | MR | Zbl

[15] Noskov M. B., “Formuly priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, 15, Izd-vo LGU, L., 1988, 19–22 | MR

[16] Beckers M., Cools R., “A relation between cubature formulae of trigonometric degree and lattice rules”, Numer. Integration IV, Internat. Ser. Numer. Math., 112, Birkhäuser, Basel, 1993, 13–24 | MR | Zbl