@article{ZVMMF_2005_45_1_a1,
author = {N. N. Osipov},
title = {On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {8--16},
year = {2005},
volume = {45},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a1/}
}
TY - JOUR AU - N. N. Osipov TI - On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 8 EP - 16 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a1/ LA - ru ID - ZVMMF_2005_45_1_a1 ER -
%0 Journal Article %A N. N. Osipov %T On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 8-16 %V 45 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a1/ %G ru %F ZVMMF_2005_45_1_a1
N. N. Osipov. On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 1, pp. 8-16. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_1_a1/
[1] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl
[2] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210 | MR | Zbl
[3] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl
[4] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU, 1959, no. 4, 3–18 | MR
[5] Noskov M. V., Schmid H. J., “Minimal cubature formulae of an even degree for the 2-torus”, Sibirskii zh. vychisl. matem., 5:3 (2002), 267–274
[6] Mysovskikh I. P., “O kubaturnykh formulakh, tochnykh dlya trigonometricheskikh mnogochlenov”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1114–1117 | MR | Zbl
[7] Sloan I. H., Kachoyan P. J., “Lattice methods for multiple integration: theory, error analysis and examples”, SIAM J. Numer. Analys., 24 (1987), 116–128 | DOI | MR | Zbl
[8] Lyness J. N., “An introduction to lattice rules and their generator matrices”, IMA J. Numer. Analys., 9 (1989), 405–419 | DOI | MR | Zbl
[9] Cools R., Sloan I. H., “Minimal cubature formulae of trigonometric degree”, Math. Comput., 65:216 (1996), 1583–1600 | DOI | MR | Zbl
[10] Noskov M. B., “Kubaturnye formuly dlya priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, 14, Izd-vo LGU, L., 1985, 15–23 | MR
[11] Möller H. M., “Lower bounds for the number of nodes in cubature formulae”, Numer. Integration, Birkhäuser, Basel, 1979, 221–230 | MR
[12] Osipov H. H., “O semeistvakh minimalnykh kubaturnykh formul chetnoi trigonometricheskoi tochnosti v 2-mernom sluchae”, Kubaturnye f-ly i ikh prilozh., IMVTs UNTs RAN, Ufa, 1996, 61–63
[13] Osipov H. H., “Simmetriya uzlov i koeffitsientov minimalnykh kubaturnykh formul s trigonometricheskim $d$-svoistvom pri nechetnom $d$”, Metody vychislenii, 19, Izd-vo SPb. un-ta, SPb., 2001, 166–171
[14] Lyness J. N., Keast P., “Application of the Smith normal form to the structure of lattice rules”, SIAM J. Numer. Analys. and Appl., 16:1 (1995), 218–231 | DOI | MR | Zbl
[15] Noskov M. B., “Formuly priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, 15, Izd-vo LGU, L., 1988, 19–22 | MR
[16] Beckers M., Cools R., “A relation between cubature formulae of trigonometric degree and lattice rules”, Numer. Integration IV, Internat. Ser. Numer. Math., 112, Birkhäuser, Basel, 1993, 13–24 | MR | Zbl