A numerical method for finding dispersion curves and guided waves of optical waveguides
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2203-2218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The original problem in an unbounded domain is reduced to a linear parametric eigenvalue problem in a circle, which is convenient for numerical solution. The examination of the solvability of this problem is based on the spectral theory of compact self-adjoint operators. The existence of guided waves is proved, and properties of the dispersion curves are investigated. An algorithm for the numerical solution of the problem based on the discretization of the equations using the finite element method is proposed. Numerical results are discussed.
@article{ZVMMF_2005_45_12_a9,
     author = {R. Z. Dautov and E. M. Karchevskii and G. P. Kornilov},
     title = {A numerical method for finding dispersion curves and guided waves of optical waveguides},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2203--2218},
     year = {2005},
     volume = {45},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a9/}
}
TY  - JOUR
AU  - R. Z. Dautov
AU  - E. M. Karchevskii
AU  - G. P. Kornilov
TI  - A numerical method for finding dispersion curves and guided waves of optical waveguides
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2203
EP  - 2218
VL  - 45
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a9/
LA  - ru
ID  - ZVMMF_2005_45_12_a9
ER  - 
%0 Journal Article
%A R. Z. Dautov
%A E. M. Karchevskii
%A G. P. Kornilov
%T A numerical method for finding dispersion curves and guided waves of optical waveguides
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2203-2218
%V 45
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a9/
%G ru
%F ZVMMF_2005_45_12_a9
R. Z. Dautov; E. M. Karchevskii; G. P. Kornilov. A numerical method for finding dispersion curves and guided waves of optical waveguides. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2203-2218. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a9/

[1] Snaider A., Lav Dzh., Teoriya opticheskikh volnovodov, Radio i svyaz, M., 1987

[2] Bamberger A., Bonnet A. S., “Mathematical analysis of the guided modes of an optical fiber”, SIAM J. Math. Analys., 21:6 (1990), 1487–1510 | DOI | MR | Zbl

[3] Joly P., Poirier C., “Mathematical analysis of electromagnethic open waveguides”, Math. Modelling and Numer. Analys., 29:5 (1995), 505–575 | MR | Zbl

[4] Kleev A. I., Manenkov A. B., Rozhnev A. G., “Chislennye metody rascheta dielektricheskikh volnovodov (volokonnykh svetovodov). Universalnye metodiki”, Obzor, Radiotekhn. i elektronika, 1993, no. 11, 1938–1968

[5] Joly P., Poirier C., “A numerical method for the computation of electromagnetic modes in optical fibres”, Math. Meth. Appl. Sci., 22 (1999), 389–447 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] Bonnet-Ben Dhia A. S., Joly P., “Mathematical analysis and numerical approximation of optical waveguides”, Mathematical modelling in optical science, Frontiers in Appl. Math., 22, SIAM, Philadelphia, PA, 2001, 273–324 | MR

[7] Bossavit A., “Solving Maxwell's equations in a closed cavity and the questions of spurious modes”, IEEE Trans. Magnetics, 26:2 (1990), 702–705 | DOI

[8] Dautov P. Z., Karchevskii E. M., “Primenenie nelokalnogo kraevogo usloviya k resheniyu vektornoi zadachi o sobstvennykh volnakh tsilindricheskikh volnovodov”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 1051–1066 | MR | Zbl

[9] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[10] Givoli D., Keller J. B., “Exact non-reflecting boundary conditions”, J. Comput. Phys., 82 (1989), 172–192 | DOI | MR | Zbl

[11] Givoli D., “Nonreflecting boundary conditions”, Review article, J. Comput. Phys., 94 (1991), 1–29 | DOI | MR | Zbl

[12] Vekua H. H., “O metagarmonicheskikh funktsiyakh”, Tr. Tbilisskogo matem. in-ta, 12, 1943, 105–174 | Zbl

[13] Yanke E., Emde F., Lesh F., Spetsialnye funktsii, Nauka, M., 1968

[14] Korneev V. G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo LGU, L., 1977 | MR

[15] Zlamal M., “Curved elements in finite element method. I; II”, SIAM J. Numer. Analys., 10:1 (1973), 229–240 ; 11:2 (1974), 347–362 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Karpenko V. A., Stolyarov Yu. D., Kholomeev V. F., “Teoreticheskie i eksperimentalnye issledovaniya pryamougolnogo dielektricheskogo volnovoda”, Radiotekhn. i elektronika, 25:1 (1980), 51–57 | MR