Solutions of ultrahyperbolic equations and their application in texture analysis
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2159-2167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solutions of ultrahyperbolic $2\times 2$ equations are examined. An inverse diffraction problem—the recovery of the orientation distribution function from x-ray or neutron measurements of pole figures (PFs)—is reduced to a system of integral equations on the rotation group $SO(3)$. By transforming $SO(3)$, the original problem is reduced to a well-known problem in integral geometry, namely, to the recovery of a function in three-dimensional space from known integrals along straight lines. Upon this transform, the PFs are solutions to an ultrahyperbolic equation and the solution is nonunique.
@article{ZVMMF_2005_45_12_a5,
     author = {T. I. Savyolova},
     title = {Solutions of ultrahyperbolic equations and their application in texture analysis},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2159--2167},
     year = {2005},
     volume = {45},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a5/}
}
TY  - JOUR
AU  - T. I. Savyolova
TI  - Solutions of ultrahyperbolic equations and their application in texture analysis
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2159
EP  - 2167
VL  - 45
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a5/
LA  - ru
ID  - ZVMMF_2005_45_12_a5
ER  - 
%0 Journal Article
%A T. I. Savyolova
%T Solutions of ultrahyperbolic equations and their application in texture analysis
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2159-2167
%V 45
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a5/
%G ru
%F ZVMMF_2005_45_12_a5
T. I. Savyolova. Solutions of ultrahyperbolic equations and their application in texture analysis. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2159-2167. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a5/

[1] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[2] Kostomarov D. P., Zadacha Koshi dlya ultragiperbolicheskikh uravnenii, Nauka, M., 2003 | MR

[3] Volkov N. G., Savelova T. I., “O nekorrektnosti odnoi zadachi kristallofiziki”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 922–928 | MR

[4] Savelova T. I., Predislovie k knige, Novye metody issledovaniya tekstury polikristallicheskikh materialov, Sb. perev. statei iz zh. “Textures and Microstructures”, Metallurgiya, M., 1985

[5] Savelova T. I., “O reshenii odnoi obratnoi zadachi difraktsii”, Dokl. AN SSSR, 266:3 (1982), 590–593 | MR

[6] Savyolova T. I., “Calculation of domains of dependence for pole figures with an ultrahyperbolic differential equation”, Textures and Microstructures, 23 (1995), 185–199 | DOI

[7] Savyolova T. I., “Determination of domains of dependence through the solution of an ultrahyperbolic differential equation”, Textures and Microstructures, 25 (1996), 183–195 | DOI

[8] Nikolayev D. I., Schaeben H., “Characteristics of the ultrahyperbolic differential equation covering pole density functions”, Inverse Problems, 15 (1999), 1603–1619 | DOI | MR | Zbl

[9] Ivanova T. M., Nikolayev D. I., “New standard function for quantitative texture analysis”, Phys. Status Solidi (b), 228:3 (2001), 825–836 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] Budak B. M., Samarskii A. A., Tikhonov A. N., Sbornik zadach po matematicheskoi fizike, Nauka, M., 1972 | MR | Zbl

[11] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[12] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[13] Bukharova T. I., Savelova T. I., “Approksimatsiya resheniya odnoi obratnoi zadachi difraktsii”, Zh. vychisl. matem. i matem. fiz., 25:4 (1985), 617–622 | MR

[14] Bucharova T. I., Savyolova T. I., “Application of normal distributions on $SO(3)$ and $S^n$ for orientation function approximation”, Textures and Microstructures, 21 (1993), 161–176 | DOI

[15] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl