Control problems for stationary magnetohydrodynamic equations of a viscous heat-conducting fluid under mixed boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2131-2147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Control problems for the stationary magnetohydrodynamic model of a viscous heat-conducting fluid are studied under mixed boundary conditions imposed on the velocity, electromagnetic field, and temperature. It is proved that the original boundary value problem and the general control problem are solvable. The application of the Lagrange principle is validated, the regularity of Lagrange multipliers is investigated, and local conditions for the uniqueness of a solution to control problems for specific cost functionals are derived.
@article{ZVMMF_2005_45_12_a3,
     author = {G. V. Alekseev and R. V. Brizitskii},
     title = {Control problems for stationary magnetohydrodynamic equations of a viscous heat-conducting fluid under mixed boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2131--2147},
     year = {2005},
     volume = {45},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a3/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - R. V. Brizitskii
TI  - Control problems for stationary magnetohydrodynamic equations of a viscous heat-conducting fluid under mixed boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2131
EP  - 2147
VL  - 45
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a3/
LA  - ru
ID  - ZVMMF_2005_45_12_a3
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A R. V. Brizitskii
%T Control problems for stationary magnetohydrodynamic equations of a viscous heat-conducting fluid under mixed boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2131-2147
%V 45
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a3/
%G ru
%F ZVMMF_2005_45_12_a3
G. V. Alekseev; R. V. Brizitskii. Control problems for stationary magnetohydrodynamic equations of a viscous heat-conducting fluid under mixed boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2131-2147. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a3/

[1] Meir A. J., Schmidt P. G., “On electromagnetically and thermally driven liquid-metall flows”, Nonlinear Analys., 47 (2001), 3281–3294 | DOI | MR | Zbl

[2] Sterl A., “Numerical simulation of liquid metal MHD flows in rectangular ducts”, J. Fluid Mech., 216 (1990), 161–191 | DOI | Zbl

[3] Park H. M., Jung W. S., “Numerical solution of optimal magnetic suppression of natural convection in magneto-hydrodynamic flows by empirical reduction of modes”, Computers and Fluids, 31 (2002), 309–334 | DOI | Zbl

[4] Liu Y. C., Okano Y., Dost S., “The effect of applied magnetic field on flow structures in liquid phase electroepitaxy — a tree-dimensional simulation model”, J. Crystal Growth, 244 (2002), 12–26 | DOI

[5] Conca C., Murat F., Pironneau O., “The Stokes and Navier-Stokes equations with boundary conditions involving the pressure”, Japan J. Math., 20 (1994), 196–210 | MR

[6] Alekseev G. V., Smishliaev A. B., “Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions”, J. Math. Fluid Mech., 3:1 (2001), 18–39 | DOI | MR | Zbl

[7] Alekseev G. V., Smyshlyaev A. B., Tereshko D. A., “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 84–98 | MR

[8] Alekseev G. V., Brizitskii R. V., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti so smeshannymi granichnymi usloviyami”, Dalnevostochnyi matem. zhurnal, 4:1 (2003), 108–126

[9] Meir A. J., “On the equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions”, Comput. Math. Appl., 25 (1993), 13–29 | DOI | MR | Zbl

[10] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Prikl. mekhan. i tekhn. fiz., 44:6 (2003), 170–179 | MR | Zbl

[11] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. RAN, 395:3 (2004), 322–325 | MR

[12] Alekseev G. V., “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sibirskii matem. zhurnal, 45:2 (2004), 243–262 | MR

[13] Alekseev G. B., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sibirskii matem. zhurnal, 42:5 (2001), 971–991 | MR | Zbl

[14] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394 | MR | Zbl

[15] Girault V., Raviart P. A., Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer, Berlin, 1986 | MR | Zbl

[16] Valli A., Orthogonal decompositions of $\mathbf{L}^2(\mathbf{\Omega})^3$, Preprint UTM 493, Dept. Math. Univ. Toronto; Galamen, 1995

[17] Grisvard P., Elliptic problems in nonsmooth domains, Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl

[18] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[19] Alekseev G. B., Brizitskii R. V., Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti so smeshannymi granichnymi usloviyami, Preprint No 2, IPM DVO RAN, Vladivostok; Dalnauka, 2004, 40 pp.