Calculating an optimal program and an optimal control in a linear problem with a state constraint
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2112-2130

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear optimal control problem with a state constraint is studied. A dual method for calculating an optimal program is described. The method is based on a fast algorithm for solving the optimal control problem with intermediate state constraints. It is used for calculating real-time feedback optimal controls. The results are illustrated by an example of the optimal control for a mechanical system with two degrees of freedom.
@article{ZVMMF_2005_45_12_a2,
     author = {N. V. Balashevich and R. Gabasov and F. M. Kirillova},
     title = {Calculating an optimal program and an optimal control in a linear problem with a state constraint},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2112--2130},
     publisher = {mathdoc},
     volume = {45},
     number = {12},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a2/}
}
TY  - JOUR
AU  - N. V. Balashevich
AU  - R. Gabasov
AU  - F. M. Kirillova
TI  - Calculating an optimal program and an optimal control in a linear problem with a state constraint
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2112
EP  - 2130
VL  - 45
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a2/
LA  - ru
ID  - ZVMMF_2005_45_12_a2
ER  - 
%0 Journal Article
%A N. V. Balashevich
%A R. Gabasov
%A F. M. Kirillova
%T Calculating an optimal program and an optimal control in a linear problem with a state constraint
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2112-2130
%V 45
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a2/
%G ru
%F ZVMMF_2005_45_12_a2
N. V. Balashevich; R. Gabasov; F. M. Kirillova. Calculating an optimal program and an optimal control in a linear problem with a state constraint. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2112-2130. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a2/