Calculating an optimal program and an optimal control in a linear problem with a state constraint
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2112-2130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linear optimal control problem with a state constraint is studied. A dual method for calculating an optimal program is described. The method is based on a fast algorithm for solving the optimal control problem with intermediate state constraints. It is used for calculating real-time feedback optimal controls. The results are illustrated by an example of the optimal control for a mechanical system with two degrees of freedom.
@article{ZVMMF_2005_45_12_a2,
     author = {N. V. Balashevich and R. Gabasov and F. M. Kirillova},
     title = {Calculating an optimal program and an optimal control in a linear problem with a state constraint},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2112--2130},
     year = {2005},
     volume = {45},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a2/}
}
TY  - JOUR
AU  - N. V. Balashevich
AU  - R. Gabasov
AU  - F. M. Kirillova
TI  - Calculating an optimal program and an optimal control in a linear problem with a state constraint
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2112
EP  - 2130
VL  - 45
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a2/
LA  - ru
ID  - ZVMMF_2005_45_12_a2
ER  - 
%0 Journal Article
%A N. V. Balashevich
%A R. Gabasov
%A F. M. Kirillova
%T Calculating an optimal program and an optimal control in a linear problem with a state constraint
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2112-2130
%V 45
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a2/
%G ru
%F ZVMMF_2005_45_12_a2
N. V. Balashevich; R. Gabasov; F. M. Kirillova. Calculating an optimal program and an optimal control in a linear problem with a state constraint. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2112-2130. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a2/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl

[2] Dikusar V. V., Milyutin A. A., Kachestvennye i chislennye metody v printsipe maksimuma, Nauka, M., 1989 | MR | Zbl

[3] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[4] Hartl R. F., Sethi S. P., Vickson R. G., “A survey of the maximum principle for optimal control problems with state constraints”, SIAM Rev., 37 (1995), 181–218 | DOI | MR | Zbl

[5] Balashevich H. V., Gabasov R., Kirillova F. M., “Algoritmy programmnoi i pozitsionnoi optimizatsii sistem upravleniya s promezhutochnymi fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 41:10 (2001), 1485–1504 | MR | Zbl

[6] Gabasov R., Kirillova F. M., Kostina E. A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya”, Avtomatika i telemekhan., 1996, no. 7, 121–130 ; No 8, 90–99 | MR | Zbl | MR | Zbl

[7] Gabasov R., Kirillova F. M., “Printsipy optimalnogo upravleniya”, Dokl. HAH Belarusi, 48:1 (2004), 15–18 | MR | Zbl

[8] Mayne D. Q., Rawlings J. B., Rao C. V., Scokaert P. O. M., “Constrained model predictive control: Stability and optimality”, Automatica, 36 (2000), 789–814 | DOI | MR | Zbl

[9] Gabasov P., Kirillova F. M., Kostyukova O. I., “Postroenie optimalnykh upravlenii tipa obratnoi svyazi v lineinoi zadache”, Dokl. AN SSSR, 320:6 (1991), 1294–1299 | MR

[10] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zh. vychisl. matem. i matem. fiz., 40:6 (2000), 838–859 | MR | Zbl

[11] Balashevich N. V., Gabasov R., Kirillova F. M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 263–284 | MR