@article{ZVMMF_2005_45_12_a14,
author = {S. V. Shevkunov},
title = {A stochastic method for the calculation of the mean force potential in condensed media under blockade of the heat motion by a potential barrier},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2283--2291},
year = {2005},
volume = {45},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a14/}
}
TY - JOUR AU - S. V. Shevkunov TI - A stochastic method for the calculation of the mean force potential in condensed media under blockade of the heat motion by a potential barrier JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 2283 EP - 2291 VL - 45 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a14/ LA - ru ID - ZVMMF_2005_45_12_a14 ER -
%0 Journal Article %A S. V. Shevkunov %T A stochastic method for the calculation of the mean force potential in condensed media under blockade of the heat motion by a potential barrier %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 2283-2291 %V 45 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a14/ %G ru %F ZVMMF_2005_45_12_a14
S. V. Shevkunov. A stochastic method for the calculation of the mean force potential in condensed media under blockade of the heat motion by a potential barrier. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2283-2291. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a14/
[1] Stamatopoulou A., DeSouza L. E. S., Ben-Amotz D., Talbot J., “Chemical potential of hard molecular solutes in hard shpere fluids. Monte Carlo simulations and analytical approximations”, J. Chem. Phys., 102:5 (1995), 2109–2112 | DOI
[2] Shevkunov S. V., Martsinovski A. A., Vorontsov-Velyaminov P. N., “A new Monte Carlo method for direct calculation of the critical size and the formation work of a microdrop”, Molecular Simulation, 5 (1990), 119–132 | DOI
[3] Shevkunov C. B., “Ustoichivost klasterov vody na ionakh gidroniya, formiruyuschikhsya v usloviyakh radioaktivnogo oblucheniya atmosfery”, Dokl. RAN, 362:2 (1998), 214–218
[4] Shevkunov C. B., “Svobodnaya energiya i entropiya formirovaniya vodnykh klasterov na ionakh gidroniya v usloviyakh radioaktivnogo oblucheniya atmosfery. Kompyuternyi eksperiment”, Khimiya vysokikh energii, 33:5 (1999), 325–331
[5] Shevkunov S. V., Vegiri A., “Examination of the structural properties of the $\mathrm{H}_3\mathrm{O}+(\mathrm{H}_2\mathrm{O})_n$ clusters in the grand canonical ensemble, by employing a new many-body potential-energy function”, J. Chem. Phys., 111:20 (1999), 9303–9314 | DOI
[6] Shevkunov S. V., Vegiri A., “A revised many-body potential energy function for the description of the protonated water clusters”, Molecular Phys., 98:3 (2000), 149–165 | DOI
[7] Shevkunov S. V., “Mezhmolekulyarnye vzaimodeistviya i teplofizicheskie svoistva klasterov. Raschet svobodnoi energii kompleksov $\mathrm{H}_3\mathrm{O}+(\mathrm{H}_2\mathrm{O})_n$ metodom Monte-Karlo”, Kolloidnyi zh., 62:4 (2000), 569–576
[8] Shevkunov S. V., “Kompyuternoe modelirovanie klasterizatsii vody na ionakh khlora. 1: Termodinamicheskie svoistva”, Kolloidnyi zh., 64:2 (2002), 262–269
[9] Shevkunov C. B., “Struktura i termicheskaya ustoichivost gidratnoi obolochki ionov khlora v usloviyakh polyarnoi stratosfery. Modelirovanie metodom Monte-Karlo”, Zh. fiz. khimii., 76 (2002), 583–595
[10] Shevkunov C. B., “Raschet energii Gibbsa reaktsii $\mathrm{OH}-(\mathrm{H}_2\mathrm{O})_{n-1}+\mathrm{H}_2\mathrm{O}=\mathrm{OH}-(\mathrm{H}_2\mathrm{O})_n$”, Zh. obschei khimii, 72:3 (2002), 735–742
[11] Lyubartsev A. P., Martsinovski A. A., Shevkunov S. V., Vorontsov-Velyaminov P. N., “New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles”, J. Chem. Phys., 96:3 (1992), 1776–1783 | DOI
[12] Guardia E., Robinson A., Padro J. A., “Mean force potential for the calcium-chloride ion pair in water”, J. Chem. Phys., 99:5 (1993), 4229–4230 | DOI
[13] Kovalenko A., Hirata F., “Potential of mean force of simple ions in ambient aqueous solution. I: Three-dimensional reference interaction site model approach”, J. Chem. Phys., 112:223 (2000), 10391–10402 | DOI
[14] Peslherbe G. H., Landanyi B. M., Hynes J. T., “Structure of $\mathrm{NaJ}$ ion pairs in water clusters”, Chem. Phys., 258:2–3 (2000), 201–204 | DOI
[15] Stakhanov I. P., O fizicheskoi prirode sharovoi molnii, Energoatomizdat, M., 1985
[16] Stakhanov I. P., “Klasternaya plazma i izluchenie sharovoi molnii”, Zh. tekhn. fiz., 46 (1976), 82–89
[17] Kunin V. N., Pleshivtsev B. C., Furov L. V., “Eksperimenty po issledovaniyu prirody sharovoi molnii”, Teplofiz. vysokikh t-r, 35:6 (1997), 866–870
[18] Alanakyan Yu. R., “Vodorodnaya sharovaya molniya”, Dokl. RAN, 385:6 (2002), 747–749
[19] Grigoryan S. S., “O mekhanizme vozniknoveniya sharovoi molnii”, Dokl. RAN, 385 (2002), 750–753 | Zbl
[20] Egorov A. I., Stepanov S. I., Shabanov G. D., “Demonstratsiya sharovoi molnii v laboratorii”, Uspekhi fiz. nauk, 174:1 (2004), 107–109
[21] Shevkunov S. V., “Rasseyanie radiovoln santimetrovogo diapazona v ionizirovannom radioaktivnym izlucheniem gaze. Formirovanie klasternoi plazmy”, Zh. eksperim. i teor. fiz., 119:3 (2001), 485–508
[22] Solomon S., Garcia R. P., Rowland F. Sh., Wuebles D. J., “On the depletion of Antarctic ozone”, Nature, 321 (1986), 755–762 | DOI
[23] Toon O. B., Turco R. P., “Polar stratospheric clouds and ozone depletion”, Sci. Amer., 6 (1991), 40–47
[24] Zamalin V. M., Norman G. E., Filinov B. C., Metod Monte-Karlo v statisticheskoi termodinamike, Nauka, M., 1977 | MR
[25] Estrin D. A., Kohanoff J., Laria D. H., Weht R. O., “Hybrid quantum and classical mechanical Monte Carlo simulations of the interaction of hydrogen chloride with solid water clusters”, Chem. Phys. Letts., 280 (1997), 280–286 | DOI
[26] Re S., Osamura Yo., Suzuki Yo., Schaefer H. F., “Structures and stability of hydrated clusters of hydrogen chloride, $\mathrm{HCl}(\mathrm{H}_2\mathrm{O})_n$, $n=1$–$5$”, J. Chem. Phys., 109:3 (1998), 973–977 | DOI
[27] Lee Ch., Sosa C., Planas M., Novoa J., “A theoretical study of the ionic dissociation of $\mathrm{HF}$, $\mathrm{HCl}$, and $\mathrm{H}_2\mathrm{S}$ in water clusters”, J. Chem. Phys., 104:18 (1996), 7081–7085 | DOI
[28] Xu S. Ch., “Hydrogen bond and cooperative effect in the reactions of $\mathrm{HOCl}$ with $\mathrm{HCl}$ on water clusters”, J. Chem. Phys., 11:5 (1999), 2242–2254
[29] Kroes G.-J., Clary D. C., “Sticking of $\mathrm{HCl}$ and $\mathrm{ClOH}$ to ice: A computational study”, J. Phys. Chem., 96 (1992), 7079–7088 | DOI
[30] Fluckiger B., Chaix L., Rossi M. J., “Properties of the $\mathrm{HCl}/\mathrm{Ice}$, $\mathrm{HBr}/\mathrm{Ice}$, and $\mathrm{H}_2\mathrm{O}/\mathrm{Ice}$ interface at stratospheric temperatures (200 K) and its importance for atmospheric heterogeneous reactions”, J. Phys. Chem. A, 104:50 (2000), 11739–11750 | DOI
[31] Milet A., Moszvnski R., Moszynski C. S., Wormer P. E. S., “Theoretical study of the protolytic dissociation of $\mathrm{HCl}$ in water clusters”, J. Chem. Phys., 115:1 (2001), 349–356 | DOI
[32] Demirdjan B., Ferry D., Suzanne J., “Structure and dynamics of ice $\mathrm{Ih}$ films upon $\mathrm{HCl}$ adsorption between 190 and 270 K. I: Neutron diffraction and quasielastic neutron scattering experiments”, J. Chem. Phys., 116:12 (2002), 5143–5149 | DOI
[33] Toubin C., Picaud S., Hoang P. N. M., Girardet C., “Structure and dynamics of ice $\mathrm{Ih}$ films upon $\mathrm{HCl}$ adsorption between 190 and 270 K. II: Molecular dynamics simulations”, J. Chem. Phys., 116:12 (2002), 5150–5157 | DOI
[34] Shevkunov C. B., “Sposobny li klastery vody ionizirovat $\mathrm{HCl}$ v usloviyakh polyarnoi stratosfery? Mezhmolekulyarnye vzaimodeistviya”, Kolloidnyi zh., 66:2 (2004), 248–262
[35] Shevkunov S. V., “Psevdopotentsialnaya model neparnykh vzaimodeistvii v klasterakh $\mathrm{H}_3\mathrm{O}+(\mathrm{H}_2\mathrm{O})_n\mathrm{Cl}$ na fone termicheskikh fluktuatsii”, Zh. fiz. khimii, 78:3 (2004), 467–477
[36] I. S. Grigorev, E. Z. Meilikhov (red.), Fizicheskie velichiny, Energoatomizdat, M., 1991