An analytical numerical method for the construction of solutions to boundary-value problems for the two-dimensional stationary Navier–Stokes system using complex analysis techniques
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2251-2259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method is examined for the construction of approximate solutions to boundary value problems for the Navier–Stokes equations, which describe plane stationary flows of a viscous incompressible fluid. The method is based on the use of the complex form of the original equations and on the representation of the unknown complex-valued functions and the corresponding conjugate functions by their expansions in powers of the conjugate independent variable, the coefficients being holomorphic functions. A method of partitioning into analytic elements with subsequent sewing is proposed. The use of this method makes it possible to construct approximate solutions in domains with a fairly complicated configuration. As an illustration, the numerical results are given for the flow in a canal with a notch.
@article{ZVMMF_2005_45_12_a12,
     author = {A. I. Alexandrovich and M. B. Soloviev},
     title = {An analytical numerical method for the construction of solutions to boundary-value problems for the two-dimensional stationary {Navier{\textendash}Stokes} system using complex analysis techniques},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2251--2259},
     year = {2005},
     volume = {45},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a12/}
}
TY  - JOUR
AU  - A. I. Alexandrovich
AU  - M. B. Soloviev
TI  - An analytical numerical method for the construction of solutions to boundary-value problems for the two-dimensional stationary Navier–Stokes system using complex analysis techniques
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2251
EP  - 2259
VL  - 45
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a12/
LA  - ru
ID  - ZVMMF_2005_45_12_a12
ER  - 
%0 Journal Article
%A A. I. Alexandrovich
%A M. B. Soloviev
%T An analytical numerical method for the construction of solutions to boundary-value problems for the two-dimensional stationary Navier–Stokes system using complex analysis techniques
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2251-2259
%V 45
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a12/
%G ru
%F ZVMMF_2005_45_12_a12
A. I. Alexandrovich; M. B. Soloviev. An analytical numerical method for the construction of solutions to boundary-value problems for the two-dimensional stationary Navier–Stokes system using complex analysis techniques. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2251-2259. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a12/

[1] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl

[2] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1973 | MR

[3] Aleksandrovich A. I., Vorobev I. A., Zhovnovatyuk V. G., Solovev M. B., “Postroenie reshenii uravnenii Nave-Stoksa, Kortevega-de-Friza i sinus-Gordon”, Soobsch. po prikl. matem., VTs RAN, M., 2004

[4] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1976 | MR

[5] Kolosov G. V., Primenenie kompleksnoi peremennoi k teorii uprugosti, ONTI, M.–L., 1935

[6] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966

[7] Aleksandrovich A. I., “Primenenie teorii funktsii dvukh kompleksnykh peremennykh k resheniyu prostranstvennykh zadach teorii uprugosti”, Izv. AN SSSR. Mekhan. tverdogo tela, 1977, no. 2, 164–168

[8] Aleksandrovich A. I., Demidova A. A., “Reshenie nelineinykh uravnenii ploskoi zadachi teorii uprugosti dlya tela Setkha v golomorfnykh funktsiyakh”, Sb. tr. III Vseros. konf. po teorii uprugosti s mezhdunar. uchastiem (Azov), Novaya kniga, Rostov-na-Donu, 2003, 27–30

[9] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[10] Aleksandrovich A. I., Kuvshinov P. A., Titorenko D. F., “Postroenie priblizhennykh reshenii kraevykh zadach teorii uprugosti metodom analiticheskikh elementov”, Matem. modelirovanie, 13:4 (2001), 109–116 | MR | Zbl