Time asymptotics of a field excited in a waveguide by a harmonic current
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2219-2231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A three-dimensional regular waveguide is examined. The limiting amplitude principle for frequencies other than the cutoff frequencies is substantiated. The asymptotic behavior of the solution to the problem of excitation of oscillations by a current of the form $fe^{-i\omega t}$ at large $t$ is found both for frequencies other than the cutoff frequencies and for a frequency coinciding with one of the cutoff frequencies (in the case of the resonance).
@article{ZVMMF_2005_45_12_a10,
     author = {A. N. Bogolyubov and M. D. Malykh and A. A. Panin},
     title = {Time asymptotics of a field excited in a waveguide by a harmonic current},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2219--2231},
     year = {2005},
     volume = {45},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a10/}
}
TY  - JOUR
AU  - A. N. Bogolyubov
AU  - M. D. Malykh
AU  - A. A. Panin
TI  - Time asymptotics of a field excited in a waveguide by a harmonic current
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2219
EP  - 2231
VL  - 45
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a10/
LA  - ru
ID  - ZVMMF_2005_45_12_a10
ER  - 
%0 Journal Article
%A A. N. Bogolyubov
%A M. D. Malykh
%A A. A. Panin
%T Time asymptotics of a field excited in a waveguide by a harmonic current
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2219-2231
%V 45
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a10/
%G ru
%F ZVMMF_2005_45_12_a10
A. N. Bogolyubov; M. D. Malykh; A. A. Panin. Time asymptotics of a field excited in a waveguide by a harmonic current. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 12, pp. 2219-2231. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_12_a10/

[1] Tikhonov A. N., Samarskii A. A., “O printsipe izlucheniya”, Zh. eksperim. i teor. fiz., 18:2 (1948), 243–248

[2] Laks P., Fillips R., Teoriya rasseyaniya, Mir, M., 1979

[3] Morawetz C. S., “The decay of solutions of the exterior initial boundary value problem for the wave equation”, Communs Pure and Appl. Math., 14 (1961), 561–568 | DOI | MR | Zbl

[4] Morawetz C. S., “The limiting amplitude principle”, Communs Pure and Appl. Math., 15 (1962), 349–361 | DOI | MR | Zbl

[5] Morawetz C. S., “The limiting amplitude principle for arbitrary finite bodies”, Communs Pure and Appl. Math., 18 (1965), 183–189 | DOI | MR | Zbl

[6] Sveshnikov A. G., “Printsip izlucheniya”, Dokl. AN SSSR, 73:5 (1950), 917–920 | Zbl

[7] Werner P., “Ein Resonanzphä nomen in der Theorie akustischer und elektromagnetischer Wellen”, Math. Meth. Appl. Sci., 6 (1984), 104–128 | DOI | MR | Zbl

[8] Ramm A. G., Werner P., “On the limit amplitude principle for a layer”, J. Reine angew. Math., 360 (1985), 19–46 | MR | Zbl

[9] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 2, Izd-vo inostr. lit., M., 1961