The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 2000-2016 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for modeling the hard excitation of self-oscillations in the case of the resonance 1:2 in a nonlocal situation using local methods is proposed. This makes it possible to reveal some characteristic features of the dynamic behavior. In particular, it is shown that, under certain conditions, the stable zero solution can coexist with a chaotic attractor.
@article{ZVMMF_2005_45_11_a8,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2000--2016},
     year = {2005},
     volume = {45},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a8/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2000
EP  - 2016
VL  - 45
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a8/
LA  - ru
ID  - ZVMMF_2005_45_11_a8
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2000-2016
%V 45
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a8/
%G ru
%F ZVMMF_2005_45_11_a8
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 2000-2016. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a8/

[1] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 1, In-t kompyuternykh issl., Moskva–Izhevsk, 2004

[2] Khazin L. G., Shnol E. E., Ustoichivost kriticheskikh polozhenii ravnovesiya, NTsBI AN SSSR, Puschino, 1985 | MR

[3] Berzhe P., Pomo I., Vidal K., Poryadok v khaose. O deterministskom podkhode k turbulentnosti, Merkurii-Press, Cherepovets, 2000

[4] Khazina G. G., Khazin L. G., Suschestvenno neodnorodnye sistemy v zadachakh ustoichivosti, Preprint No 145, IPMatem. RAN, 1982 | MR

[5] Tkhai V. N., “Tsikl v sisteme, blizkoi k rezonansnoi sisteme”, Prikl. matem. i mekhan., 68:2 (2004), 254–272 | MR

[6] Bolotin V. V., Nekonservativnye zadachi teorii uprugoi ustoichivosti, Fizmatgiz, M., 1961 | MR

[7] Kulikov A. M., “Nelineinyi panelnyi flatter: opasnost zhestkogo vozbuzhdeniya avtokolebanii”, Differents. ur-niya, 28:6 (1992), 1080–1082 | MR | Zbl

[8] Kolesov A. Yu., Rozov N. Kh., “Vliyanie kvadratichnoi nelineinosti na dinamiku periodicheskikh reshenii volnovogo uravneniya”, Matem. sb., 193:1 (2002), 93–118 | MR | Zbl