Convergence of the suitable affine subspace method for finding the least distance to a simplex
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 1991-1999 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A minimum-length vector is found for a simplex in a finite-dimensional Euclidean space. The algorithm of successive projections onto affine subspaces containing suitable subsimplices of the initial simplex is shown to have a globally higher-than-linear convergence rate. Results of numerical experiments are presented.
@article{ZVMMF_2005_45_11_a7,
     author = {E. A. Nurminski},
     title = {Convergence of the suitable affine subspace method for finding the least distance to a simplex},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1991--1999},
     year = {2005},
     volume = {45},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a7/}
}
TY  - JOUR
AU  - E. A. Nurminski
TI  - Convergence of the suitable affine subspace method for finding the least distance to a simplex
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1991
EP  - 1999
VL  - 45
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a7/
LA  - ru
ID  - ZVMMF_2005_45_11_a7
ER  - 
%0 Journal Article
%A E. A. Nurminski
%T Convergence of the suitable affine subspace method for finding the least distance to a simplex
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1991-1999
%V 45
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a7/
%G ru
%F ZVMMF_2005_45_11_a7
E. A. Nurminski. Convergence of the suitable affine subspace method for finding the least distance to a simplex. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 1991-1999. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a7/

[1] Bauschke H. H., Borwein J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Revs., 38:3 (1996), 367–426 | DOI | MR | Zbl

[2] Nurminskii E. A., “Parallelnyi metod proektsii na vypukluyu obolochku semeistva mnozhestv”, Izv. vuzov. Matematika, 12:499 (2003), 78–82 | MR | Zbl

[3] Nurminskii E. A., “Metod posledovatelnykh proektsii dlya resheniya zadachi o naimenshem rasstoyanii dlya simpleksov”, Elektronnyi zhurnal “Issledovano v Rossii”, 160 (2004), 1732–1739 http://zhurnal.ape.relarn.rn/articles/2004/160.pdf

[4] Bregman L. M., “Nakhozhdenie obschei tochki vypuklykh mnozhestv metodom posledovatelnogo proektirovaniya”, Dokl. AN SSSR, 162:3 (1965), 487–490 | MR | Zbl

[5] Gurin L. G., Polyak B. T., Raik E. V., “Metody proektsii dlya otyskaniya obschei tochki vypuklykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 7 (1967), 1211–1228 | MR

[6] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR

[7] http://www.octave.org

[8] Nurminskii E. A. http://www.iacp.dvo.ru/lab_11/e-prints